GET THE APP

..

Molecular and Genetic Medicine

ISSN: 1747-0862

Open Access

Diabetic Feet Scald with Popliteal Artery Ligation - A New Study Rat Model, Represent Human Diabetic Foot Ulceration

Abstract

Huimin Han, Yandong Liu, Abu Taiub Mohammed Mohiuddin Chowdhury and Shahid Alam

Diabetes mellitus is a potent metabolic disorder of this time. Due to the progression of disease itself and along with the collateral damages by its various complications this is being considered as one of the greatest threat to patient’s well-being & status. During recent years the prevalence of ulceration in diabetic patients especially foot ulcer has dramatically increased, causing tremendous negative impact over the patient. But unfortunately, there is no reliable animal model that resembles human diabetic foot ulcer, thus the study of ulcer healing under conditions of “diabetes mellitus” remains a challenge. In this literature, we describe a new approach to establish an experimental model that accurately resembles human diabetic foot ulceration. This new model will likely provide a superior way to study diabetic foot ulceration. The objective of this study was aimed to investigate and compare the established “rat models of diabetic foot ulceration” in order to determine the most suitable option that represents the similar state of the disease in human. Diabetic sample were prepared by using Wistar rats and they were divided in to four groups - A. Diabetic foot scalded group, B. bilateral popliteal artery ligation group, C. Diabetic foot scalded plus popliteal artery ligation group, D. Disease control group. After a period of thirty days the rats were assessed by- nail discoloration, degree of muscular atrophy, size of ulcer, purulent secretions and presence granulation tissue in the wound bed. Our study concludes that- “diabetic foot scalded plus popliteal artery ligation group” rats most closely resemble the symptoms of the human diabetic foot.

PDF

Share this article

Google Scholar citation report
Citations: 3919

Molecular and Genetic Medicine received 3919 citations as per Google Scholar report

Molecular and Genetic Medicine peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward