alexa Dichotomous Hypothesis of the Solar System Origin: Subs
ISSN: 2332-2519

Journal of Astrobiology & Outreach
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Dichotomous Hypothesis of the Solar System Origin: Substantiation and Consequences for Astrobiology

Vladimir Kompanichenko*

Institute for Complex Analysis, FEB RAS 4, Birobidzhan, 679016, Russia

Corresponding Author:
Vladimir Kompanichenko
Institute for Complex Analysis
FEB RAS 4, Sholom Aleyhem Street, Birobidzhan, 679016, Russia
Tel: +7-4262224013
E-mail: [email protected]

Received Date: July 07, 2016; Accepted Date: November 18, 2016; Published Date: November 25, 2016

Citation: Kompanichenko V (2016) Dichotomous Hypothesis of the Solar System Origin: Substantiation and Consequences for Astrobiology. Astrobiol Outreach 4:155. doi: 10.4172/2332-2519.1000155

Copyright: © 2016 Kompanichenko V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The aim of this study consists in the advancement of the author’s dichotomous hypothesis of hot origin of the solar system that is alternate to the well-known hypotheses of cold accretion. The hypothesis proposes formation of solar planets and satellites through dichotomous division of the superheated protoplanetary mass ejected from the youngest Sun due to strong non-equilibrium competition between gravitational contraction and heat expansion. Like the cold accretion hypotheses, the dichotomous hypothesis also explains the key regularities of the solar system structure (angular momentum distribution, position of the asteroid belt, back rotation of Venus and Uranus, etc.). Besides, it offers explanation of new data on extra solar planetary systems that is difficult to understand basing on the gradual cold accretion process (in particular, the misaligned protoplanetary discs in the binary protostar IRS 43). Some predictions following of the given explanation can be examined during future observations. The proposed hot origin of planets and satellites provides some new opportunities and directions for search of life in the solar system, including comets and hydrothermal environments on Mars and Europa.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version