Reach Us +44-1625-708989
Digital Image Processing Assessment of the Differential in vitro Antiangiogenic Effects of Dimeric and Monomeric Beta2-Glycoprotein I | OMICS International | Abstract
ISSN: 2157-7099

Journal of Cytology & Histology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Digital Image Processing Assessment of the Differential in vitro Antiangiogenic Effects of Dimeric and Monomeric Beta2-Glycoprotein I

Camila Machado1, Miriela Escobedo Nicot2, Carolina Nigro Stella1, Sara Vaz1, Cassia Prado1, Durvanei Augusto Maria3, Francisco Palacios Fernandez4 and Ligia Ferreira Gomes1*

1Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil

2Computer Sciences Department, Mathematical Computer Faculty, University of Oriente, Santiago de Cuba, Cuba

3Biochemical and Biophysical Laboratory, Butantan Institute, Sao Paulo, Brazil

4Physics Department, Natural Sciences Faculty, University of Oriente, Santiago de Cuba, Cuba

*Corresponding Author:
Ligia Ferreira Gomes
Department of Clinical and Toxicological Analysis
Faculty of Pharmaceutical Sciences University of Sao Paulo
580, Bl 17 S, Lineu Prestes Avenue
05508-900, Sao Paulo, Brazil
Tel: +55 1130913638
Fax: +55 1138132197
E-mail: [email protected]

Received date: July 25, 2013; Accepted date: October 08, 2013; Published date: October 10,2013

Citation: Machado C, Nicot ME, Stella CN, Vaz S, Prado C, et al. (2013) Digital Image Processing Assessment of the Differential in vitro Antiangiogenic Effects of Dimeric and Monomeric Beta2-Glycoprotein I. J Cytol Histol 4:187. doi:10.4172/2157-7099.1000187

Copyright: © 2013 Machado C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The β2 -glycoprotein I (β2GPI) is an endothelial cell ligand, accessible for systemic, autocrine and paracrine signaling. In vivo, β2GPI is immobilized by binding, mainly to the endothelial cell membrane heparan sulfate but also to anionic phospholipids, and functional receptors. The β2GPI was attributed antiangiogenic properties both in vitro and in vivo. This work was designed to evaluate the antiangiogenic effects of native, monomeric, and dimeric β2GPI. Monomeric as well as dimeric forms were purified from human plasma, and the native protein was obtained as a balanced mixture of both components present in human plasma. The proliferation, migration, and differentiation of Human Umbilical Vascular Endothelial Cells (HUVEC) were considered in an in vitro angiogenesis model based on tridimensional cultures and quantitative digital image processing techniques. The early events of the in vitro HUVEC growth and differentiation in the tridimensional cultures microenvironment were addressed by the morphological analysis. The morphological aspects were correlated to the cell growth, oxidative balance outcome and mitochondrial toxicity assays, leading to the evidence that non-confluent HUVEC cultures temporarily stop growing in the presence of the native protein, but remain competent to proliferate. The β2GPI monomer allowed the in vitro differentiation of the HUVECs into typical trabeculæ and incomplete capillary-like tubes, along with lowering the available proliferation fraction. In opposition, the dimer rich purification fraction exposure halted cell elongation and migration, and prevented the organization of the tubular structures in tridimensional cultures, maintaining cell growth. The morphological approach was useful to attribute to β2GPI dimerization the cell migration inhibition modulation, which potentially leads to overcome the diminished sprouting antiangiogenic effect of the monomer fraction of the native protein.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry


[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7