alexa Direct Fluorescent Decay Measurements Using High Speed Electronics | OMICS International | Abstract
ISSN: 2155-6210

Journal of Biosensors & Bioelectronics
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Direct Fluorescent Decay Measurements Using High Speed Electronics

Jerrie V. Fairbanks1*, Linda S. Powers1,2, Xiang Zhang1, Andrew Duncan3and Xavier Ramus4

1Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ, USA

2Department of Biomedical Engineering, University of Arizona, 1657 E Helen ST, Tucson, AZ, USA

3MicroBioSystems of Utah, North Logan, UT, USA

4Texas Instruments, 5411 E. Williams Blvd, Tucson, USA

*Corresponding Author:
Jerrie V. Fairbanks
Department of Electrical and Computer Engineering
University of Arizona
1230 E Speedway Bl. Tucson
AZ 85721, USA
Tel: (520) 621-4025
E-mail: [email protected]

Received Date: July 09, 2012; Accepted Date: July 24, 2012; Published Date: July 28, 2012

Citation: Fairbanks JV, Powers LS, Zhang X, Duncan A, Ramus X (2012) Direct Fluorescent Decay Measurements Using High Speed Electronics. J Biosens Bioelectron S11:003. doi: 10.4172/2155-6210.S11-003

Copyright: © 2012 Fairbanks JV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


High speed data acquisition architecture is implemented as part of a time-resolved fluorescence detection instrument to directly measure the time course of fluorescent decay. The architecture is implemented using a very fast dynode chain photomultiplier tube and associated gating circuitry, a broad spectrum light emitting diode excitation source, very wide band electronics for amplification and filtering, and a high speed digital oscilloscope. The fluorescence decay of tris (2,2´-bipyridyl) ruthenium (II) is measured and the lifetime measurement is compared with that using other reported methods. The system’s architecture is thereby validated for data acquisition of broadband signals including transient fluorescent recording.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7