alexa Direct Strength Method for Web Crippling of Cold-formed Steel C- and Zsections Subjected to One-flange Loading Martin Dara
ISSN: 2472-0437

Journal of Steel Structures & Construction
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Direct Strength Method for Web Crippling of Cold-formed Steel C- and Zsections Subjected to One-flange Loading Martin Dara

Martin Dara and Cheng Yu*

Department of Engineering Technology, University of North Texas, Denton, TX, USA

*Corresponding Author:
Cheng Yu
Associate Professor
Department of Engineering Technology
University of North Texas, Denton, TX, USA
Tel:
940-891-6891
E-mail:
[email protected]

Received Date: October 13, 2015; Accepted Date: December 10, 2015; Published Date: December 17, 2015

Citation: Dara M, Yu C (2015) Direct Strength Method for Web Crippling of Cold-formed Steel C- and Z- sections Subjected to One-flange Loading. J Steel Struct Constr 1:105. doi:10.4172/2472-0437.1000105

Copyright: © 2015 Dara M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Cold-formed steel flexural members can experience buckling failure at the web when compressive loads are applied to the flanges. Determining the web crippling strength analytically can be difficult because it depends on various parameters including loading conditions, bearing length, thickness of the material, web inclination, flange lengths etc. Due to these parameters, the current design method was developed based on the experimental data only. The paper presents an attempt to develop a semi-analytical design approach for the web crippling strength using the Direct Strength Method concept. The focus is on the cold-formed steel C and Z sections subjected to onflange loading conditions. The research indicates that the Direct Strength Method is appropriate for predicting the web crippling strength. New design equations are proposed and verified by with the experimental results.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords