Directional Flow Control with Multi-Electrode System Microplasma Actuator
Received Date: Sep 22, 2017 / Accepted Date: Nov 20, 2017 / Published Date: Nov 27, 2017
Abstract
The plasma actuator is a relatively new technology intended to replace mechanical actuators on aircraft or reduce drag. A small size dielectric barrier discharge microplasma actuator energized at low discharge voltage of 1.4 kV was applied for flow modification. Flow was measured using incense particles which were tracked by a highspeed camera. An AC voltage was applied to the multi-electrode microplasma actuator. The multi-electrode system allowed different electrodes to be driven independently, thus, due to the microplasma generation, leftward flow and upward flow were obtained by changing the configuration of the multi-electrode system. The high-speed camera measurements and particle tracking velocimetry (PTV) analysis showed the modification of the flow by microplasma at various time intervals. The experimental results were compared with the numerical simulations results obtained using our developed code considering the Suzen & Huang model. The numerical results were in agreement with the experimental results.
Keywords: Microplasma; Dielectric barrier discharge; Flow control; Actuator; Numerical simulation
Citation: Blajan M, Ito A, Kristof J, Shimizu K (2017) Directional Flow Control with Multi-Electrode System Microplasma Actuator. J Biomed Syst Emerg Technol 4: 116.
Copyright: © 2017 Blajan M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Recommended Journals
Article Usage
- Total views: 1785
- [From(publication date): 0-2017 - Dec 06, 2019]
- Breakdown by view type
- HTML page views: 1692
- PDF downloads: 93