alexa Discovery of Long Tail Keywords in Paid Search
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Short Communication

Discovery of Long Tail Keywords in Paid Search

Tesiero J*

Principal Data Scientist Consultant, University of Maine, USA

Corresponding Author:
Tesiero J
Principal Data Scientist Consultant
University of Maine, USA
Tel: 207 581 1865
E-mail: www.blipiq.com

Received date April 22, 2015; Accepted date July 25, 2016; Published date July 29, 2016

Citation: Tesiero J (2016) Discovery of Long Tail Keywords in Paid Search. J Appl Computat Math 5:315. doi: 10.4172/2168-9679.1000315

Copyright: © 2016 Tesiero J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The following work describes an elegant, efficient keyword clustering method to discover long tail keywords in paid search data. In keyword auctions, such words often go undiscovered as their cost in being bid to higher ranking positions is deemed too high to justify the potential of significantly added conversion revenue. By discovering clusters with low volume keywords and established, high-performing and high volume keywords, the quality of the low volume (long tail) keywords is inferred by association.

After a brief introduction, the data used to train the clustering algorithm is described. Then, the data reduction process (the discovery of the most predictive features) is described. We then describe the method, followed by the results and interpretation.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords