alexa Discrimination between Inrush and Fault in Transformer: ANN Approach | OMICS International | Abstract
ISSN: 0976-4860

International Journal of Advancements in Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Discrimination between Inrush and Fault in Transformer: ANN Approach

SRParaskar*, M.A.Beg, G.M.Dhole

Department of Electrical Engineering, S.S.G.M.College of Engineering, Shegaon.(M.S.),44203,India

Corresponding Author:
SRParaskar
Department of Electrical Engineering
S.S.G.M.College of Engineering Shegaon
(M.S.),44203,India
Email: [email protected]

Abstract

Transformer protection is critical issue in power system as the issue lies in the accurate and rapid discrimination of magnetizing inrush current from internal fault current. Artificial neural network has been proposed and has demonstrated the capability of solving the transformer monitoring and fault detection problem using an inexpensive, reliable, and noninvasive procedure. This paper gives algorithm where statistical parameters of detailed d1 level wavelet coefficients of signal are used as an input to the artificial neural network (ANN), which develops in to a novel approach for online detection method to discriminate the magnetizing inrush current and inter-turn fault, and even the location of fault i.e. whether the interturn fault lies in primary winding or secondary winding through the use of discrete wavelet transform and artificial neural-nets (ANNs). A custom-built single-phase transformer was used in the laboratory to collect the data from controlled experiments. After the feature extraction using discrete wavelet transform (DWT), a neural network models MLP has been designed and trained rigorously. The proposed on line detection scheme is also discussed.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version