alexa Dynamic Stress Factor (DySF): A Significant Predictor of Severe Hypoglycemic Events in Children with Type 1 Diabetes
ISSN: 2155-6156

Journal of Diabetes & Metabolism
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Dynamic Stress Factor (DySF): A Significant Predictor of Severe Hypoglycemic Events in Children with Type 1 Diabetes

Rawlings RA1,2, Yuan L3,4, Shi H5, Brehm W6, Pop-Busui R6,7 and Nelson PW1*

1Center for Computational Medicine and Bioinformatics, University of Michigan, USA

2Departments of Biophysics, University of Michigan, USA

3Departments of Mathematics, University of Michigan, USA

4University of Michigan Program in Informatics, University of Michigan, USA

5University of Michigan Medical School, USA

6Brehm Center for Diabetes Research, University of Michigan, USA

7Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, USA

*Corresponding Author:
Patrick Nelson
Center for Computational Medicine and Bioinformatics
100 Washtenaw Ave, University of Michigan, Ann Arbor
MI 48109-1055, USA
Tel: (734) 763-3408
Fax: (734) 615-6553
E-mail: [email protected]

Received date: January 17, 2012; Accepted date: February 24, 2012; Published date: February 28, 2012

Citation: Rawlings RA, Yuan L, Shi H, Brehm W, Pop-Busui R et al. (2012) Dynamic Stress Factor (DySF): A Significant Predictor of Severe Hypoglycemic Events in Children with Type 1 Diabetes. J Diabetes Metab 3:177. doi:10.4172/2155-6156.1000177

Copyright: © 2012 Rawlings RA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Hemoglobin A1c (HbA1c) is the current standard used in the clinical treatment of patients with diabetes. However, it has been shown that patients with similar HbA1c values may have widely different fluctuations in blood glucose values over the same period of time, including time spent in hyper- and/or hypo-glycemia. Hence, there exists a need for quantitative measures that can supplement HbA1c in managing patients with diabetes. We introduce and compare the Dynamic Stress Factor, DySF, a newly developed metric that quantifies glycemic volatility based on patient-specific glucose transition density profiles with HbA1c and with currently used glucose variability metrics in predicting severe hypoglycemia in children with type 1 diabetes. DySF, the daily weighted number of large monotonic glycemic transitions that occur within one hour, was calculated for 441 total subjects with type 1 diabetes (146 children, aged 8-14 yrs) to assess the magnitude and frequency of glucose transitions per day. Severe hypoglycemic episodes (HE) were quantified for all subjects and evaluated against HbA1c and existing measures of glucose variability, including SD, MAGE, MODD, and CONGA using logistic regression models. DySF was found to be a predictor of severe HE in children (p = 0.018) with the likelihood of a child, aged 8-14 yrs, experiencing severe hypoglycemia increasing by up to 20% with decreasing values of up to 60% of DySF. Patients of any age who had one or multiple severe hypoglycemic episodes had on average a lower DySF when compared to those with no HE. Additionally, when considering mean glucose levels, DySF/mean was a preliminary predictor of severe HE in patients with HbA1c ≤ 6.5% (p = 0.062). DySF is a dynamic, quantitative, measure of daily glucose “volatility” that separates patients, within the same strata of HbA1c, into visually distinct patient profiles. DySF can be used as a preliminary predictor of clinically severe hypoglycemia in children and “well-controlled” patients with HbA1c ≤ 6.5%.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords