alexa Dynamics of HSP60-Cypd Binding Studied with Surface Plasmon Resonance
ISSN : 2153-2435

Pharmaceutica Analytica Acta
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Dynamics of HSP60-Cypd Binding Studied with Surface Plasmon Resonance

Ekaterina A Korobkova*

Department of Sciences, John Jay College of Criminal Justice at the City University of New York, New York, NY 10019

*Corresponding Author:
Ekaterina A Korobkova
Department of Sciences
John Jay College of Criminal Justice
at the City University of New York
524 W 59th St., New York, NY 10019, USA
Tel: (212) 237-8064
Fax: 212-237-8318
E-mail: [email protected]

Received date: October 02, 2015 Accepted date: October 30, 2015 Published date: October 31, 2015

Citation: Korobkova EA (2015) Dynamics of HSP60-Cypd Binding Studied with Surface Plasmon Resonance. Pharm Anal Acta 6:432. doi: 10.4172/2153-2435.1000432

Copyright: © 2015 Korobkova EA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objectives: The binding of chaperonin HSP60 to cyclophilin D (CypD) represents an oncogenic pathway that prevents mitochondria from undergoing permeability transition pore (PTP) opening. Thus HSP60 may be considered as an attractive target for the design of chemical inhibitors. The complexity of the HSP60 structure prevents the use of standard screening methods. The present study was aimed to analyze the dynamics of CypD interactions with different HSP60 domains. Method: Surface plasmon resonance (SPR) technology was employed. Antibodies that map to various regions of the HSP60 were immobilized on a CM5 biosensor chip using amino-coupling chemistry. HSP60 was attached to various antibodies on the chip resulting in different orientations of the protein, and the kinetics of its binding to HSP60 was analyzed. Results: The dissociation rate constants for HSP60-CypD interactions ranged between 5.5 × 10-4 s-1 and 16 × 10-4 s-1. The dissociation equilibrium constants varied from 15.8 nM to 43.5 nM. An antibody recognizing a region between residues 50 and 100 in the equatorial domain of HSP60 prevented its association with CypD. Conclusion: SPR technology proved successful in the analysis of the interactions between CypD and HSP60 subunits. The binding strength was comparable to that of a relatively strong antibody-antigen binding. The preferential binding of CypD to a specific domain within HSP60 subunit suggests the possibility of designing a molecular antagonist.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords