alexa Effect of GPD2 and PDC6 Deletion on Isobutanol Titer in <em>Saccharomyces Cerevisiae</em> | OMICS International | Abstract
ISSN: 2471-9315

Applied Microbiology: Open Access
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effect of GPD2 and PDC6 Deletion on Isobutanol Titer in Saccharomyces Cerevisiae

Aili Zhang*, Yuhan Gao, Jingzhi Li and Hongxing Jin

School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road No 8, Hongqiao District, Tianjin, 300130, People's Republic of China

*Corresponding Author:
Aili Zhang
School of Chemical Engineering and Technology
Hebei University of Technology, Guangrong Road No 8
Hongqiao District, Tianjin, 300130
People's Republic of China
Tel: +86-22-60200444
E-mail: [email protected]

Received date: March 02, 2016; Accepted date: March 23, 2016; Published date: March 28, 2016

Citation: Zhang A, Gao Y, Li J, Jin H (2016) Effect of GPD2 and PDC6 Deletion on Isobutanol Titer in Saccharomyces Cerevisiae. Appli Microbio Open Access 2:112. doi:10.4172/2471-9315.1000112

Copyright: © 2016 Zhang A et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Objectives: Isobutanol is regarded as a next-generation biofuel for its higher octane number and higher energy density than ethanol. However, during isobutanol biosynthesis, ethanol and glycerol are major unwanted byproducts. In order to improve isobutanol production in Saccharomyces cerevisiae, we used molecular biology and genetic recombination technologies to eliminate ethanol and glycerol titers.

Methods: In this study, GPD2 and PDC6 were deleted to increase isobutanol production in microaerobic fermentation of Saccharomyces cerevisiae. Engineered strain HZAL–13 (PGK1p–BAT2 gpd2Δ::RYUR) was constructed by overexpressing of BAT2 (which encodes a branched-chain amino-acid aminotransferase) and deleting GPD2 (which encodes glycerol-3-phosphate dehydrogenase). Engineered strain HZAL–14 (PGK1p–BAT2 pdc6Δ::R gpd2Δ::RYUR) was obtained by further deleting PDC6 (which encodes pyruvate decarboxylase) in HZAL– 13 pILV2. Then we tested the fermentation performances of engineered strains and control strain. During microaerobic fermentation, cultures were performed at 30°C in the unbaffled shake flasks kept at constant stirring speed of 100 rev/min with 100 ml medium for 48 hours.

Results: The maximum isobutanol titers of control strain, HZAL–13 pILV2 and HZAL–14 pILV2 were 29.8 mg/l, 162.3 mg/l and 309.3 mg/l, respectively. These results demonstrate that decreasing glycerol formation and ethanol biosynthesis in combination through deletion of PDC6 and GPD2 could increase dramatically the isobutanol titer in S. cerevisiae.

Conclusion: Overexpression of related genes in isobutanol biosynthesis pathway and deletion of key genes that encode glycerol and ethanol biosynthesis is a promising strategy to increase isobutanol titer in Saccharomyces cerevisiae.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7