alexa Effects of Exercise Intensity in Experimental Autoimmune Encephalomyelitis
ISSN: 2376-0389

Journal of Multiple Sclerosis
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Effects of Exercise Intensity in Experimental Autoimmune Encephalomyelitis

Wens I1*, Broekmans T1, Hendriks JJA1, Savelberg HH2, Hesselink MK2, Eijnde BO1

1REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Hasselt University, Belgium

2Department of Human Movement Sciences, NUTRIM School for nutrition, Toxicology and Metabolism, Maastricht University Medical Center, The Netherlands

Corresponding Author:
Inez Wens
REVAL – Rehabilitation Research Center
Biomedical Research Institute (BIOMED) Hasselt University
Martelarenlaan 42, B-3500 Hasselt, Belgium
Tel: +32 (0)11 26 93 70
E-mail: [email protected]

Received date: November 11, 2014; Accepted date: January 19, 2015; Published date: January 23, 2015

Citation: Wens I, Broekmans T, Hendriks JJA, Savelberg HH, Hesselink MK et al. (2015) Effects of Exercise Intensity in Experimental Autoimmune Encephalomyelitis. J Mult Scler 2:133. doi:10.4172/2376-0389.1000133

Copyright: ©2014 Wens I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

Background: Research on muscle contractile properties and disease progression following experimental autoimmune encephalomyelitis (EAE) and physical exercise remains conflicting. Objective: To investigate the effect of different exercise intensities on muscle contractile properties and hindquarter paralysis during EAE in Lewis rats.
Methods: A control and EAE group were divided in sedentary, light, moderate and high intensity running subgroups. During EAE course, hind limb paralysis, body weight and food intake were registered. Following EAE recovery isokinetic foot extensor strength was measured during 115 maximal contractions and fiber characteristics of m. tibialis anterior (TA) and m. extensor digitorum longus (EDL) were analysed.
Results: EAE reduced CSA of type IIb+x fibers of TA and EDL, while type I and IIa fibers CSA were not affected by EAE. Exercise did not change CSA of type I, IIa and IIb+x fibers of EDL nor TA, except for TA type IIa fibers CSA, which increased in EAE moderate and EAE high intensity groups. Muscle work peak was absent in all EAE animals during isokinetic muscle contractions. Intense exercise delayed onset of hindquarter paralysis in EAE, while disease peak and remission were not affected by exercise.

Conclusion: This study suggests that EAE reduces CSA of type IIb+x fibers of TA and EDL. This possibly explains the absence of peak muscle work during the first of a series of isokinetic muscle contractions. Furthermore, exercise was not able to reduce muscle fiber atrophy, whereas high intensity exercise delayed onset of hindquarter paralysis.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords