alexa Efficient In Vitro Regeneration, Analysis of Molecular Fidelity and Agrobacterium tumifaciens - Mediated Genetic Transformation of Grewia asiatica L. | OMICS International
ISSN: 2329-9029

Journal of Plant Biochemistry & Physiology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Efficient In Vitro Regeneration, Analysis of Molecular Fidelity and Agrobacterium tumifaciens - Mediated Genetic Transformation of Grewia asiatica L.

Wani TA1, Satiander Rana2, Bhat WW2, Pandith SA2, Niha Dhar2, Sumeer Razdan2, Suresh Chandra1, Namrata Sharma3 and Surrinder K Lattoo2*

1Genetic Resources and Agrotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180 001, Jammu and Kashmir, India

2Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi-180 001, Jammu and Kashmir, India

3Department of Botany, University of Jammu, Jammu Tawi-180 006, Jammu and Kashmir, India

Corresponding Author:
Surrinder K Lattoo
Plant Biotechnology Division, CSIR - Indian
Institute of Integrative Medicine, Canal Road
Jammu Tawi-180 001, Jammu and Kashmir, India
Tel: +919419203465
Fax: +911912569019
E-mail: [email protected]

Received March 17, 2016; Accepted May 14, 2016; Published May 21, 2016

Citation: Wani TA, Rana S, Bhat WW, Pandith SA, Dhar N, et al. (2016) Efficient In Vitro Regeneration, Analysis of Molecular Fidelity and Agrobacterium tumifaciens - Mediated Genetic Transformation of Grewia asiatica L. J Plant Biochem Physiol 4:167. doi:10.4172/2329-9029.1000167

Copyright: © 2016 Wani TA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Grewia asiatica is a dietotheraphtically important fruit bearing shrub, indigenous to India. It is a rich resource of triterpinoids and flavonoids and possesses many putative health benefits. Two of the drawbacks which include short shelf life of its fruits and larger seed volume impedes its full exploitation. Seed abortion for developing seedless cultivars through biotechnological interventions is a viable option. One of the prerequisites for such strategy is to develop an efficient plant regeneration and transformation protocols in G. asiatica. Against this backdrop multiple shoot induction was achieved from nodal explants with axillary buds, on culturing in Woody Plant medium (WM) fortified with 3% (w/v) sucrose, 2 × 10-5M Kinetin (Kn) and 1 × 10-5M indole-3-butyric acid (IBA) giving rise to an average of 4.25 ± 0.71 microshoots per explant. More than 90% of the explants formed micro-shoots with mean shoot length of 10.5 ± 1.96 cm leading to whole plant regeneration. Healthy regenerated shoots showed prolific rooting of more than 95% on WM supplemented with 4.8 × 10-6M indole-3-butyric acid (IBA). Following simple hardening procedures, rooted plantlets, were transferred to soil-sand (1:1; v/v) with about 92% success. Genetic fidelity was assessed using random amplified polymorphic DNA (RAPD). Additionally, Agrobacterium-mediated genetic transformation protocol was developed using A. tumefaciens strain GV2260 harboring binary vector p35SGUSINT containing hygromycin phosphotransferase gene (hpt). Transformation was verified by GUS assay and detection of the hygromycin phosphotransferase (hpt) by polymerase chain reaction. In vitro regeneration and ensuing molecular fidelity of regenerated plants and transformation studies are hitherto unreported for G. asiatica.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]csonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version