alexa Ekf- Based Sensorless Direct Torque Control Of Permane
ISSN: 2229-8711

Global Journal of Technology and Optimization
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Ekf- Based Sensorless Direct Torque Control Of Permanent Magnet Synchronous Motor: Comparison Between Two Different Selection Tables

Habib Kraiem*, Mustapha Messaoudi, Lassaâd Sbita and Mohamed Naceur Abdelkrim

National Engineering School of Gabes (ENIG), Tunisia

*Corresponding Author:
Habib Kraiem
National Engineering School of Gabes (ENIG), Tunisia
E-mail: [email protected], [email protected]

Received date: April 2009; Revised date: June 2009; Accepted date: November 2009

 

Abstract

In this paper a sensorless direct torque control (DTC) scheme of permanent magnet synchronous motor (PMSM) is proposed. To improve the performance of the classical DTC a modified control scheme based on twelve sectors instead of six is presented and a comparison between the two methods is carried out. The high performance of the DTC is related to the accuracy of the flux estimation witch is affected by parameter variation especially the stator resistance due changes in temperature or frequency. Therefore, it is adequate to compensate this parameter variation using an online adaptation of the control scheme by the estimated stator resistance using the Extended Kalman Filter (EKF). The EKF is designed to estimate the rotor speed and stator flux and resistance. Estimated parameters are used for the closed loop speed sensorless control operation of the PMSM. It has been demonstrated that the EKF estimation and sensorless DTC perform quite well in spite of the parameters and load variations that handled by the system. The simulation results are presented to validate the effectiveness of the overall control scheme.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords