Reach Us +44-1522-440391
Empirical Likelihood Inference on Survival Functions under Proportional Hazards Model | OMICS International | Abstract
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Empirical Likelihood Inference on Survival Functions under Proportional Hazards Model

Shihong Zhu*, Mai Zhou and Shaoceng Wei

Department of Statistics, University of Kentucky, Lexington, KY 40508, USA

*Corresponding Author:
Shihong Zhu
Department of Statistics
University of Kentucky
Lexington, KY 40508, USA
Tel: 859-230-4373
E-mail: [email protected]

Received date: June 19, 2014; Accepted date: July 16, 2014; Published date: July 21, 2014

Citation: Zhu S, Zhou M, Wei S (2014) Empirical Likelihood Inference on Survival Functions under Proportional Hazards Model. J Biomet Biostat 5:206. doi:10.4172/2155-6180.1000206

Copyright: © 2014 Zhu S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are are credited.


Under the framework of the Cox model, it is often of interest to assess a subject’s survival prospect through the individualized predicted survival function, and the corresponding pointwise or simultaneous confidence bands as well. The standard approach to the confidence bands relies on the weak convergence of the estimated survival function to a Gaussian process. Such normal approximation based confidence band may have poor small sample coverage accuracy and generally requires an appropriate transformation to improve its performance. In this paper, we propose an empirical likelihood ratio based pointwise and simultaneous confidence bands that are transformation preserving and therefore eliminate the need of any transformations. The effectiveness of the proposed method is illustrated by a simulation study and an application to the Mayo Clinical primary biliary cirrhosis dataset.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version