alexa Engineering Crop Plants for Nematode Resistance through Host-Derived RNA Interference | OMICS International
ISSN: 2168-9296

Cell & Developmental Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Engineering Crop Plants for Nematode Resistance through Host-Derived RNA Interference

Selvaraj Tamilarasan and Manchikatla Venkat Rajam*
Plant Polyamine, Transgenic and RNAi Laboratory, Department of Genetics, University of Delhi, India
*Corresponding Author : Manchikatla Venkat Rajam
Plant Polyamine, Transgenic and RNAi Laboratory
Department of Genetics, University of Delhi South Campus
Benito Juarez Road, New Delhi-110021, India
Tel: 91-9818108515
E-mail: [email protected]
Received May 13, 2013; Accepted June 14 2013; Published June 17, 2013
Citation: Tamilarasan S, Rajam MV (2013) Engineering Crop Plants for Nematode Resistance through Host-Derived RNA Interference. Cell Dev Biol 2:114. doi:10.4172/2168-9296.1000114
Copyright: © 2013 Tamilarasan S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Plant parasitic nematodes are major threat for crop plants and cause severe economic losses worldwide annually. Various strategies deployed for the control of these notorious parasites has resulted either in limited success, or having huge negative impact on environment. RNA interference (RNAi) is a gene-silencing phenomenon that is conserved in various eukaryotes. Experimentally induced RNAi is highly specific and potent, leading to its wide utilization in functional studies for exploring gene functions. Crops engineered through RNAi have proven to be successful in protection against pest and parasites, including nematodes. Engineering nematode resistance in crop plants through host-derived RNAi is largely based on the selection of target gene. The expression of nematode specific dsRNA in plants generates siRNAs and taken up by nematodes on feeding. Depending upon the function, level of expression and silencing efficacy of the target gene, resistance was determined. RNAi seems to be promising in many aspects, such as providing durable resistance to crops against plant parasitic nematodes in the near future. In the present article, we have reviewed the published work on the host-derived RNAi for developing nematode resistance in plants.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version