alexa Enhance Vitamin B12 Production by Online CO2 Concentration Control Optimization in 120 m3 Fermentation | OMICS International | Abstract
ISSN: 2155-9821

Journal of Bioprocessing & Biotechniques
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enhance Vitamin B12 Production by Online CO2 Concentration Control Optimization in 120 m3 Fermentation

Ze-Jian Wang1, Hui-Yuan Wang1, Ping Wang1, Yi-ming Zhang2, Ju Chu1, Ying-Ping Zhuang1* and Si-Liang Zhang1
1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
Corresponding Author : Ying-Ping Zhuang
State Key Laboratory of Bioreactor
Engineering, East China University of Science & Technology
P. O. Box 329,130 Meilong Road
Shanghai 200237, People’s Republic of China
Tel: 86-21-64253702
E-mail: [email protected]
Received April 24, 2014; Accepted May 12, 2014; Published May 20, 2014
Citation: Wang ZJ, Wang HY, Wang P, Zhang Y, Chu J, et al. (2014) Enhance Vitamin B12 Production by Online CO2 Concentration Control Optimization in 120 m3 Fermentation. J Bioprocess Biotech 4:159 doi:10.4172/2155-9821.1000159
Copyright: © 2014 Wang ZJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Great amounts of carbon dioxide generated by Pseudomonas denitrificans during high aerobic vitamin B12 fermentation, while the influence of CO2 concentration on vitamin B12 production remains unclear. In this paper, we present parallel experiments to investigate various levels of inlet CO2 fractions on the physiological metabolism of P. denitrificans in laboratory scale fermentation. The results demonstrated that the oxygen transfer rate, cell growth and glucose consumption were inhibited with CO2 fraction elevated from 0.03% to 8.86 ± 0.24%, while the most exciting results showed that the specific vitamin B12 production rate and the yield to glucose were greatly stimulated when dissolved CO2 increased to 8.86 ± 0.24%. Therefore, the optimal exhausted CO2 fraction control strategy in 120 m3 fermenter was established. With the exhaust CO2 concentration was well controlled at 7.5 ± 0.25% on-line, vitamin B12 production greatly improved to 223.7 ± 3.7 mg/L, which was 11.2% higher than that of control. This strategy was proved to be significant necessary and effective for successfully scale up optimization in industrial vitamin B12 fermentation.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7