alexa Enhanced Bioactivity of Titanium by Laser-generated Lot
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enhanced Bioactivity of Titanium by Laser-generated Lotus-Topographies: Molecular Insights in Osteogenic Signaling Pathways of hASCs

Fadeeva E1, Deiwick A1, Chichkov B1,2 and Schlie-Wolter S1,2*

1Laser Zentrum Hannover e.V.; Nanotechnology Department; Hollerithallee 8; D-30419, Hannover, Germany

2Institute of Quantum Optics; Leibniz University Hannover; Welfengarten 1; D-30167, Hannover, Germany

*Corresponding Author:
Sabrina Schlie-Wolter
Laser Zentrum Hannover e.V., Hollerithallee 8
30419 Hannover, Germany
Tel: +49-511-2788-303
Fax: +49-511-2788-100
E-mail: [email protected]

Received Date: October 18, 2016; Accepted Date: October 24, 2016; Published Date: October 28, 2016

Citation: Fadeeva E, Deiwick A, Chichkov B, Schlie-Wolter S (2016) Enhanced Bioactivity of Titanium by Laser-generated Lotus-Topographies: Molecular Insights in Osteogenic Signaling Pathways of hASCs. J Nanomed Nanotechnol 7: 403. doi: 10.4172/2157-7439.1000403

Copyright: © 2016 Fadeeva E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Laser-generated lotus-topographies were shown to fulfill important requirements of demanded bioactivity: inhibition of biofilms and fibrotic capsule formation and enhanced regeneration. Here, we figure out how the demonstrated markerspecific improved osteogenic differentiation of human adipose-derived stem cells (hASCs) is accomplished. Comparing flat and lotus-structured titanium, the role of the osteogenic signaling pathways via extracellular-signal related kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs), and interplay with ERK/ p-ERK and bone morphogenic protein (BMP2)/p-Smad signaling are determined. To our knowledge, this interaction has not been analyzed before. Blocking of ERK and JNK suppresses osteogenic markers like alkaline phosphatase (ALP) activity and calcium mineralization independently from the surface. Their functionality requires both transcription factors osterix and Runx2/p-Runx2, and interplay with ERK/p-ERK and BMP2/p-Smad. P38 plays a regulatory role enabling osteogenic differentiation, which depends on the surface design. Its inhibition generally increases ERK/p-ERK cascade resulting in a high extent of Runx2/p-Runx2. Surface dependent BMP2/p-Smad and osterix are activated. The chief cause in enhanced osteogenic differentiation correlates with the improved attachment on the lotus-topography. Therefore, laser-generated lotus-structures present an attractive surface functionalization, finding their application in diverse biomedical applications.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords