alexa Enhanced Neuro-Fuzzy System Based on Genetic Algorithm for Medical Diagnosis
ISSN: 2168-9784

Journal of Medical Diagnostic Methods
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enhanced Neuro-Fuzzy System Based on Genetic Algorithm for Medical Diagnosis

Asogbon MG1, Samuel OW2,3,*, Omisore MO3 and Awonusi O4
1Department of Computer Science, Federal University of Technology Akure, Ondo State, P.M.B. 704, Nigeria
2Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, Guangdong 518055, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Department of Information and Communication Technology, Prototype Engineering Development Institute, Ilesa, P.M.B. 5025, Nigeria
*Corresponding Author : Samuel OW, PhD
1068 Xueyuan Avenue
University Town of Shenzhen
Xili, Nanshan, Shenzhen
518055 China
Tel: +86 15814491870
E-mail: [email protected], [email protected]
Received January 14, 2016; Accepted February 09, 2016; Published February 16, 2016
Citation: Asogbon MG, Samuel OW, Omisore MO, Awonusi O (2016) Enhanced Neuro-Fuzzy System Based on Genetic Algorithm for Medical Diagnosis . J Med Diagn Meth 5:205. doi:10.4172/2168-9784.1000205
Copyright: © 2016 Asogbon MG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Objective: The aim of this study was to optimize the performance of an Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of its connection weights which is usually computed based on trial and error when used to diagnose Typhoid fever patients.

Methods: This research proposed the use of Genetic Algorithm (GA) technique to automatically evolve optimum connection weights needed to efficiently train a built ANFIS model used for Typhoid fever diagnosis. The GA module computes the best set of connection weights, stores them, and later supplies them to the corresponding hidden layer nodes for training the ANFIS. The medical record of 104 Typhoid fever patients aged 15 to 75 were used to evaluate the performance of the multi-technique decision support system. 70% of the dataset was used training data, 15% was used for validation while the remaining 15% was used to observe the performance of the proposed system.

Results: From the evaluation results, the proposed Genetic Adaptive Neuro Fuzzy Inference System (GANFIS) achieved an average diagnosis accuracy of 92.7% compared to 85.4% recorded by the ANFIS method. It was equally observed that the diagnosis time was much lower for the proposed method when compared to that of ANFIS.

Conclusion: Therefore, the proposed system (GANFIS) has the capability to attenuate the key problems associated with Neuro-Fuzzy Based diagnostic methods if fully embraced and as well it could be adopted to solve challenging problems in several other domains.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords