alexa Enhancement of Vibriosis Resistance in Litopenaeus vannamei by Supplementation of Biomastered Silver Nanoparticles by Bacillus subtilis
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enhancement of Vibriosis Resistance in Litopenaeus vannamei by Supplementation of Biomastered Silver Nanoparticles by Bacillus subtilis

Elayaraja Sivaramasamy1,2, Wang Zhiwei1,3, Fuhua Li1 and Jianhai Xiang1*

1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2Central Research Laboratory, Sree Balaji Medical College and Hospital, Bharath University, Chrompet, Chennai-600 044, Tamil Nadu, India

3University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Author:
Jianhai Xiang
Institute of Oceanology, Chinese Academy of Sciences 7
Nanhai Road, Qingdao 266071, China
Tel: + 86-532- 82898568
Fax: + 86-532-82898578
E-mail: [email protected]

Received Date: January 14, 2016 Accepted Date: February 05, 2016 Published Date: February 12, 2016

Citation: Sivaramasamy E, Zhiwei W, Li F, Xiang J (2016) Enhancement of Vibriosis Resistance in Litopenaeus vannamei by Supplementation of Biomastered Silver Nanoparticles by Bacillus subtilis. J Nanomed Nanotechnol 7:352. doi: 10.4172/2157-7439.1000352

Copyright: © 2016 Sivaramasamy E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



virulent and most dreadful viral outbreaks in shrimp culture. The potential antibacterial effects of Bacillus subtilis silver nanoparticles (AgNPs) from the gut of Litopenaeus vannamei were studied. The AgNPs has ~ 420 nm in UV-visible spectrum, diameter 5-25 nm with smooth spherical shape (characterized by transmission electron microscopy) and 2θ values corresponding to the presence of silver crystal (X-ray diffraction spectrum). The AgNPs showed promising activity against Vibrio parahaemolyticus (21.25 ± 2.55 mm) and V. harveyi (19.27 ± 1.36 mm) as compared with B. subtilis, silver nitrate (AgNO3) and control. Four different experiments were conducted using different feeding behavior of L. vannamei. In comparison to untreated control group, final weight (14.89 ± 0.03 g), weight gain (9.36 ± 0.01), specific growth rate (SGR) 14.41 ± 0.09%, feed conversion ratios (FCR) 1.47 ± 0.12, higher survival and haemocyte counts were significantly greater in shrimp fed with AgNPs. The gill of entire experimental animal showed morphological alteration in histopathological investigation. The AgNPs were then tested for shrimp challenged with the V. parahaemolyticus. Statistical analysis revealed significant differences in shrimp survival between AgNPs, B. subtilis and control group. In the infective experimental study, cumulative survival of the control group (10 ± 0.321%) whereas the shrimp with AgNPs (90.66 ± 0.523%) and (71 ± 0.577%) with B. subtilis. Subsequently, real-time PCR was observed for immune related genes to determine the mRNA levels of prophenoloxidase (proPO), anti lipopolysaccharide factor (ALF2 and 4), peroxinectin (PE), superoxide dismutase (SOD), 18S, lipopolysaccharide and β -1,3-glucan-binding protein (LGBP ) and serine protein (SP). The expression of all immune related genes (mRNA levels) studied was significantly upregulated in the AgNPs diet shrimp in contrast to the B. subtilis and control. This study discovers that the biomastered AgNPs give a promising potential new tool for inhibiting vibriosis in shrimp culture.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version