alexa Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling | OMICS International | Abstract
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling

M Mohamed Musthafa*

School of Mechanical Engineering, SASTRA University, Thanjavur-613401, Tamilnadu, India

Corresponding Author:
Musthafa MM
School of Mechanical Engineering, Sastra University
Thanjavur-613401, Tamilnadu, India
Tel: 91 4362 304118
E-mail: [email protected]

Received date: March 03, 2015; Accepted date: June 12, 2015; Published date: June 19, 2015

Citation: Musthafa MM (2015) Enhancing Photoelectric Conversion Efficiency of Solar Panel by Water Cooling. J Fundam Renewable Energy Appl 5:166. doi:10.4172/2090-4541.1000166

Copyright: © 2015 Musthafa MM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Photovoltaic solar cell generates electricity by receiving solar irradiance. The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. This undesirable effect can be partially avoided by fixing a water absorption sponge on the back side of the photovoltaic panel and maintain wet condition by circulation of drop by drop water through sponge. The objective of the present work is to reduce the temperature of the solar cell in order to increase its electrical conversion efficiency. Experiments were performed with and without water cooling. A linear trend between the efficiency and temperature was found. Without cooling, the temperature of the panel was high and solar cells achieved an efficiency of 8–9%. However, when the panel was operated under water cooling condition, the temperature dropped maximally by 40C leading to an increase in efficiency of solar cells by 12%.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7