alexa Enzyme Catalysis and the Outcome of Biochemical Reactions
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Enzyme Catalysis and the Outcome of Biochemical Reactions

Piotr Milanowski1, Thomas J Carter2 and Georg F Weber3*

1University of Warsaw Biomedical Physics Program, Warsaw, Poland

2Computer Science Department, California State University Stanislaus, Turlock, CA, USA

3University of Cincinnati Academic Health Center, Cincinnati, OH, USA

*Corresponding Author:
Georg F Weber
College of Pharmacy
University of Cincinnati
3225 Eden Avenue, Cincinnati
OH 45267-0004, USA
Tel: 513-558-0947
E-mail: [email protected]

Received Date: April 29, 2013; Accepted Date: June 24, 2013; Published Date: June 27, 2013

Citation: Milanowski P, Carter TJ, Weber GF (2013) Enzyme Catalysis and the Outcome of Biochemical Reactions. J Proteomics Bioinform 6:132-141. doi:10.4172/jpb.1000271

Copyright: © 2013 Milanowski P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The investigation of enzyme catalysis has traditionally been based on the rapid equilibrium conditions defined by Henri, Michaelis and Menten. The general rate equations derived by Briggs and Haldane provided incremental progress by assuming near steady-state levels for the enzyme-substrate complex. In situ, however, enzymes may operate far from equilibrium, so that the idealizing assumptions of traditional enzyme kinetics do not hold up and the enzyme becomes an active participant in determining the outcome of a reaction. We used computer modeling of an enzyme-catalyzed reaction with substrate activation to assess the impact of the rate constants on the product production per unit time. Mapping of the parameter space in bifurcation plots displayed ranges of instability that were preceded and succeeded by distinct stable states. To test whether this phenomenon may occur in enzymes without substrate activation, we also analyzed the ordinary differential equations that describe general enzyme catalysis. We found stable responses and limit cycles to rhythmic substrate input, but no chaos. We confirmed, on the basis of theoretical calculations and experiment, that in bifurcating reactions (which are common in situ) the presence or absence of an enzyme in one arm shifts the equilibrium. These results contest the paradigm that enzymes accelerate equilibrium formation in chemical reactions without affecting the reaction outcome.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version