alexa E-Pharmacophore Model Assisted Discovery of Novel Antagonists of nNOS | OMICS International | Abstract
ISSN: 2161-1009

Biochemistry & Analytical Biochemistry
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

E-Pharmacophore Model Assisted Discovery of Novel Antagonists of nNOS

Nalamolu Ravina Madhulitha, Natarajan Pradeep, Swargam Sandeep, Kanipakam Hema, Pasala Chiranjeevi, Katari Sudheer Kumar and Amineni Uma-Maheswari*

Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati-517507, Andhra Pradesh, India

*Corresponding Author:
Uma-Maheswari A
Associate Professor and Coordinator of BIF
SVIMS Bioinformatics Centre
Department of Bioinformatics
SVIMS University
Tirupati – 517507, AP, India
Tel: 0877-2287727
E-mail: [email protected]

Received Date: November 03, 2016; Accepted Date: January 21, 2017; Published Date: January 24, 2017

Citation: Madhulitha NR, Pradeep N, Sandeep S, Hema K, Chiranjeevi P, et al. (2017) E-Pharmacophore Model Assisted Discovery of Novel Antagonists of nNOS. Biochem Anal Biochem 6:307. doi: 10.4172/2161-1009.1000307

Copyright: © 2016 Madhulitha NR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The nitric oxide (NO) synthesized by neuronal nitric oxide synthase (nNOS) acts as a neurotransmitter and plays a crucial role in a series of neurobiological functions. In diseased condition, activated nNOS induces nitrosylation as well as phosphorylation of tau protein and glycogen synthase kinase 3 beta (GSK-3β) respectively. Hyper phosphorylation of tau accelerates tau oligomerization resulting in formation of neurofibrillary tangles (NFT), ensuring the neuronal cell death in hippocampus region; a hallmark of Alzheimer’s disease (AD). Thus, designing inhibitor towards nNOS may reduce the neuronal loss caused by nNOS. Hence nNOS has been one of the revitalizing targets for AD. In the present work, one energetically optimized structure-based pharmacophore (e-pharmacophore) was generated using nNOS co-crystal structure (4D1N) to map important pharmacophoric features of nNOS. Shape based similarity screening performed using e-pharmacophore against in-house library of more than one million compounds resulted 2701 library of compounds. Rigid receptor docking (RRD) was applied and followed by molecular mechanics and generalized Born and surface area (MM-GBSA) calculation which results 22 nNOS ligands. To define the leads, dock complexes were subjected to quantum-polarized ligand docking (QPLD) followed by free energy calculations revealed 3 leads. On comparison with 1 existing inhibitor,it concealed three best leads with lower binding energy and better binding affinity. The best lead was subjected to induced fit docking (IFD) with MM-GBSA calculation and further molecular dynamics (MD) simulations for 50 ns in solvated model system. Potential energy, root mean square deviation (RMSD) and root mean square fluctuations (RMSF) results disclosed constancy of lead 1 interactions throughout 50 ns MD simulations run. Thus proposed three leads are having favorable absorption distribution metabolism excretion toxicity (ADME/T) properties and provide a scaffold for designing nNOS antagonists.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nur[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7