Reach Us +44-1474-556909
Estimating Rates of Denitrification Enzyme Activity in Wetland Soils with Direct Simultaneous Quantification of Nitrogen and Nitrous Oxide by Membrane Inlet Mass Spectrometry | Abstract
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Estimating Rates of Denitrification Enzyme Activity in Wetland Soils with Direct Simultaneous Quantification of Nitrogen and Nitrous Oxide by Membrane Inlet Mass Spectrometry

Fred J. Genthner*, Dragoslav T. Marcovich and John C. Lehrter

US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, FL, 32561, USA

*Corresponding Author:
Fred J. Genthner
US Environmental Protection Agency
Office of Research and Development
National Health and Environmental Effects Research Laboratory
Gulf Ecology Division, Gulf Breeze, FL, 32561, USA
Tel: +1 850-934-9342
Fax: +1 850-934-2401
E-mail: [email protected]

Received date: September 17, 2013; Accepted date: October 30, 2013; Published date: November 04, 2013

Citation: Genthner FJ, Marcovich DT, Lehrter JC (2013) Estimating Rates of Denitrification Enzyme Activity in Wetland Soils with Direct Simultaneous Quantification of Nitrogen and Nitrous Oxide by Membrane Inlet Mass Spectrometry. J Microb Biochem Technol 5:095-101. doi:10.4172/1948-5948.1000108

Copyright: © 2013 Genthner FJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The microbial mediated process of denitrification is a major pathway for the removal of reactive nitrogen a pollutant in natural environments and waste treatment facilities. Denitrification potential, measured as denitrification enzyme activity (DEA), was quantified in novel short-term (4 h) anaerobic assays using a more sensitive and precise technique, membrane inlet mass spectrometry (MIMS) rather than the traditional headspace electron capture gas chromatography (GC-ECD) method. Using MIMS modifications made to the instrument and sample handling allowed for the simultaneous and direct measurement of reaction products nitrous oxide (N2O), a potent greenhouse gas, and the chemically unreactive dinitrogen (N2). Rate determinations were made from the slope of a linear curve generated by plotting increasing concentrations of the reaction products with time. Strong evidence for the validity of MIMS measured DEA rates was provided by showing consistent, linear accumulations of N2O or N2 and close agreement in rates from replicate reactions. Reactions were performed using wetland soils and cultures of Pseudomonas aeruginosa and P. chloroaphis that generated denitrification end products of N2 and N2O, respectively. Under acetylene inhibition P. aeruginosa produced the N2O end product at a rate equivalent to the rate obtained in the uninhibited reaction that produced N2. No significant (p>0.05) difference was observed between MIMS or headspace with GC-ECD, determined DEA in wetland soil reactions under acetylene inhibition. Because of anoxic conditions in the reaction vessels used with MIMS, detectable rates of N2O accumulation were only observed in acetylene blocked reactions or in cultures of P. chloroaphis. This method has potential applications ranging from near realtime wastewater treatment process measurements to field studies of nitrogen cycling. The continued development and application of these types of methods are needed to improve our understanding of the mechanisms regulating denitrification and its benign, N2, and harmful, N2O, end-products.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version