alexa Estimating the Genetic Capability of Different Phytoplankton Organisms to Adapt to Climate Warming
ISSN: 2572-3103

Journal of Oceanography and Marine Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Estimating the Genetic Capability of Different Phytoplankton Organisms to Adapt to Climate Warming

Costas E, Baselga-Cervera B, García-Balboa C and Lopez-Rodas V*
Genetics, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain
Corresponding Author : Lopez-Rodas V
Genetics, Faculty of Veterinary Science
Complutense University of Madrid
28040 Madrid, Spain
Tel: 1-785-843-6153
E mail: [email protected]
Received February 10, 2014; Accepted April 11, 2014; Published April 18, 2014
Citation: Costas E, Cervera BB, Balboa CG, Rodas VL (2014) Estimating the Genetic Capability of Different Phytoplankton Organisms to Adapt to Climate Warming. Oceanography 2:123. doi: 10.4172/2332-2632.1000123
Copyright: © López-Rodas V, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
 

Abstract

Current predictions of temperature increase in sea surface water estimate that extensive regions of the ocean will be warmer than at any time in the past million years as a consequence of the present trend of release the CO2 excess into the atmosphere. Studying the capacity of phytoplankton to adapt to warming has become a relevant issue because phytoplankton represents the basis of the aquatic food web supporting about half of the global primary production. Considering the complexity of the phytoplankton community in both taxonomic level and habitat preferences, different responses to increased temperature are expected.We experimentally estimate the potential of different phytoplanktonic populations of 15 species, belonging to different taxonomic groups (Cyanoprokaryota, Dinophyta, Chlorophyta, Haptophyta, Heterokontophyta) and habitat preferences(e.g. coastal waters, open ocean, coral symbiotic), to genetically adapt in an evolutionary sense to marine warming.Since genetic variance in fitness estimates capability for adaptation of a population (Fisher’s Fundamental Theorem of Natural Selection) we measured the heritability of fitness (i.e. proportion of variance in fitness that has genetic basis) under increasing temperatures, using an experimental quantitative genetic procedure suitable to phytoplankton populations. Our results reveal that there are interspecific differences in phytoplankton capability for adaptation under a gradual warming process and provides experimental evidences for assessing how phytoplanktonic organisms might evolve under climate warming in the near future.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords