alexa Evaluating Potential Therapies in a Mouse Model of Focal Retinal Degeneration with Age-related Macular Degeneration (AMD)-Like Lesions | OMICS International
ISSN: 2155-9570

Journal of Clinical & Experimental Ophthalmology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Evaluating Potential Therapies in a Mouse Model of Focal Retinal Degeneration with Age-related Macular Degeneration (AMD)-Like Lesions

Nicholas Popp, Xi K. Chu, Defen Shen, Jingsheng Tuo and Chi-Chao Chan*
Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Dr., 10/10N103, NIH/NEI, Bethesda, MD, 20892- 1857, USA
Corresponding Author : Chi-Chao Chan
Senior Investigator, Immunopathology Section
Laboratory of Immunology, National Eye Institute
National Institutes of Health, 10 Center Dr.
10/10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA
E-mail: [email protected]
Received July 10, 2013; Accepted September 16, 2013; Published September 23, 2013
Citation: Popp N, Chu XK, Shen D, Tuo J, Chan CC (2013) Evaluating Potential Therapies in a Mouse Model of Focal Retinal Degeneration with Age-related Macular Degeneration (AMD)-Like Lesions. J Clin Exp Ophthalmol 4:296. doi:10.4172/2155-9570.1000296
Copyright: © 2013 Popp N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Although the mouse has no macula leutea, its neuroretina and retinal pigment epithelium (RPE) can develop lesions mimicking certain features of age-related macular degeneration (AMD). Differences between the Ccl2 and Cx3cr1 double deficient mouse on Crb1rd8(rd8) background (DKOrd8) and the Crb1rd8 mouse in photoreceptor and RPE pathology, as well as ocularA2E contents and immune responses, show that DKOrd8 recapitulates some human AMD-like features in addition to rd8 retinal dystrophy/degeneration. Different therapeutic interventions have been demonstrated to be effective on the AMD-like features of DKOrd8 mice. The use of the DKOrd8 model and C57BL/6N (wild type, WT) mice as group controls (4 groups) to test treatments such as high omega-3 polyunsaturated fatty acid (n-3) diet has, for example, shown the beneficial effect of n-3 on AMD-like lesions by anti-inflammatory action of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The use of self-control in the DKOrd8 mouse by treating one eye and using the contralateral eye as the control for the same mouse allows for appropriate interventional experiments and evaluates various novel therapeutic agents. Three examples will be briefly presented and discussed: (1) tumor necrosis factorinducible gene 6 recombinant protein (TSG-6) arrests the AMD-like lesions via modulation of ocular immunological gene expression, e.g., Il-17a; (2) adeno-associated virus encoding sIL-17R (AAV2.sIL17R) stabilizes the AMD-like lesions; and (3) pigment epithelium-derived factor (PEDF) ameliorates the AMD-lesions by its anti-inflammatory, anti-apoptotic and neuroprotective roles. Therefore, the DKOrd8 mouse model can be useful and appropriate for therapeutic compound screening in the management of human AMD.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version