alexa Experimental Study of the Separation of Oil in Water Emulsions by Tangential Flow Microfiltration Process. Part 2: The Use of Ultrasound for In-Situ Controlling of the Membrane Fouling | Abstract
ISSN: 2155-9589

Journal of Membrane Science & Technology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Experimental Study of the Separation of Oil in Water Emulsions by Tangential Flow Microfiltration Process. Part 2: The Use of Ultrasound for In-Situ Controlling of the Membrane Fouling

Wai Lam Loh1,2, Thiam Teik Wan1,2*, Vivek Kolladikkal Premanadhan1, Ko Ko Naing1,2, Nguyen Dinh Tam1,2, Valente Hernandez Perez1,2, Yu Qiao1, Zhao1 and Zheng Wang1

1Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore

2Centre for Offshore Research and Engineering (CORE), National University of Singapore, Singapore

*Corresponding Author:
Wan Thiam Teik
Research Associate, Faculty of Engineering
National University of Singapore
Singapore
Tel: 65-6516-8076
Fax: 65-6779-1936
E-mail: [email protected]

Received date: May 21, 2014; Accepted date: May 22, 2014; Published date: August 20, 2014

Citation: Loh WL, Wan TT, Premanadhan VK, Naing KK, Tam ND, et al. (2014) Experimental Study of the Separation of Oil in Water Emulsions by Tangential Flow Microfiltration Process. Part 2: The Use of Ultrasound for In-Situ Controlling of the Membrane Fouling. J Membra Sci Technol 4: 131. doi:10.4172/2155-9589.1000131

Copyright: © 2014 Loh WL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Abstract

Membrane has a major drawback in the form of fouling. For controlling the membrane fouling, a novel attempt of having in-situ cleaning using ultrasound cavitations allowing remediation of a polluted surface during filtration was investigated. Results of the experiments indicate significant recovery of filter permeability by the assistance of ultrasound. At a feed of 500 ppm (0.05%) oil concentration, 15.07% recovery in permeability were recorded with the mean filtration capacity to improve from 2749.6 L m−2 h−1 to 2389.4 L m−2 h−1. Significant decline in resistance of 18.93% indicates reduced fouling and the energy consumption required for maintaining the filtration flux, which may be used to supply the energy required for ultrasound cleaning. Encouraging results shows it is indeed possible to conduct in-situ cleaning while the filtration is still in operation and reduce cost for membrane replacement.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7