alexa EZH2 and Sonic Hedgehog Inhibition Reduce Proliferation, Migration, In Vitro Tumorigenesis, and CD133 Expression in Desmoplastic Medulloblastoma Cells
ISSN: 2475-3203

Journal of Brain Tumors & Neurooncology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

EZH2 and Sonic Hedgehog Inhibition Reduce Proliferation, Migration, In Vitro Tumorigenesis, and CD133 Expression in Desmoplastic Medulloblastoma Cells

Javier de la Rosa1, Leire Tapia1, Mehdi H Shahi2, Bárbara Meléndez3, Juan A Rey4, Miguel A Idoate5 and Javier S Castresana1*

1Department of Biochemistry and Genetics, University of Navarra School of Sciences, Spain

2Faculty of Medicine, Interdisciplinary Brain Research Centre, Aligarh Muslim University, India

3Molecular Pathology Research Unit, Virgen de la Salud Hospital, Spain

4IdiPaz Research Unit, La Paz University Hospital, Spain

5Department of Pathology, University of Navarra Clinic, Spain

*Corresponding Author:
Javier S Castresana
Department of Biochemistry and Genetics
University of Navarra School of Sciences, Pamplona, Spain
Tel: +34948806486
E-mail: [email protected]

Received date: June 01, 2017; Accepted date: June 09, 2017; Published date: June 16, 2017

Citation: Rosa JDL, Tapia L, Shahi MH, Meléndez B, Rey JA, et al. (2017) EZH2 and Sonic Hedgehog Inhibition Reduce Proliferation, Migration, In Vitro Tumorigenesis, and CD133 Expression in Desmoplastic Medulloblastoma Cells. J Brain Tumors Neurooncol 2:113. doi: 10.4172/2475-3203.1000113

Copyright: © 2017 Castresana JS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Medulloblastoma is the malignant brain tumor that most affects children and young people. Its treatment is very aggressive and can leave important neurocognitive sequelae in patients. Medulloblastoma can be classified histologically and molecularly in different subtypes. Our work focuses on the specific subtype in which the sonic hedgehog pathway is altered. DAOY cells, which correspond to desmoplastic Shh medulloblastoma, were independently treated with two pharmacological inhibitors: cyclopamine and DZNep. Cyclopamine directly inhibits Smo, thus inhibiting the sonic hedgehog pathway; while DZNep acts at the epigenetic level by inhibiting EZH2 function, a histone-lysine N-methyltransferase. The two inhibitions were compared cellularly and molecularly, demonstrating that both drugs reduced cell viability, colony formation, cell migration and the expression of cancer stem cells related genes, like CD133. In addition, the expression of different genes of the sonic hedgehog, EZH2, and other genes regulated by EZH2 and GLI1 were evaluated. The initial hypothesis, according to which the expression of EZH2 would regulate the sonic hedgehog pathway was not demonstrated. Quite the opposite, we observed that the sonic hedgehog pathway could positively regulate EZH2 expression. Our results, however, should be subjected to further experiments in order to elucidate the relationship between the epigenetic regulation exerted by EZH2 and the regulation of the sonic hedgehog pathway in medulloblastoma.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version