alexa Ferulic Acid Produced by Lactobacillus fermentum NCIMB 5221 Reduces Symptoms of Metabolic Syndrome in Drosophila melanogaster
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Ferulic Acid Produced by Lactobacillus fermentum NCIMB 5221 Reduces Symptoms of Metabolic Syndrome in Drosophila melanogaster

Susan Westfall1, Nikita Lomis1, Surya Pratap Singh2 and Satya Prakash1*

1Department of Biomedical Engineering, Department of Experimental Medicine, Faculty of Medicine, Biomedical Technology and Cell Therapy Research Laboratory, McGill University, 3775 University Street, Montreal, Quebec, H3A2B4, Canada

2Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

*Corresponding Author:
Satya Prakash
Department of Biomedical Engineering
Department of Experimental Medicine
Faculty of Medicine, Biomedical Technology and Cell Therapy
Research Laboratory, McGill University
3775 University Street, Montreal, Quebec
H3A2B4, Canada
Tel: 1-514-398-3676
E-mail: [email protected]

Received date June 05, 2016; Accepted date June 30, 2016; Published date July 08, 2016

Citation: Westfall S, Lomis N, Singh SP, Prakash S (2016) Ferulic Acid Produced by Lactobacillus fermentum NCIMB 5221 Reduces Symptoms of Metabolic Syndrome in Drosophila melanogaster. J Microb Biochem Technol 8: 272-284. doi:10.4172/1948-5948.1000297

Copyright: © 2016 Westfall S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Abstract

The gut microbiota is an intricate community of thousands of bacterial species living in the gastrointestinal tract critical for vitamin synthesis, mineral absorption, digestion of otherwise indigestible fibers and the extraction of energy from food. Recently, the health of the gut microbiota’s community architecture has become linked to energy-regulatory diseases including metabolic syndrome: a collection of symptoms including hyperglycemia, hypercholesterolemia, high blood pressure, increased abdominal fat and triglyceride levels. However, the mechanism of communication between the gut microbiota and the host energy metabolism remains elusive. The current study shows that ferulic acid (FA) produced by the intrinsic ferulic acid esterase activity of the probiotic bacteria Lactobacillus fermentum NCIMB 5221 (Lf5221) can dose-dependently rescue the phenotypic markers of diet-induced diabetes and obesity in Drosophila melanogaster. In Drosophila exposed to either a high-sugar or high-fat diet, living Lf5221 at 2.5 or 7.5 × 109 CFU/ml media effectively rescued whole-body weight, glucose, trehalose and triglyceride levels. All of the aforementioned effects were lost in heat-inactivated bacteria indicating that a metabolic product is responsible. Likewise, FA at 0.5 mM in the metabolically challenged Drosophila models reared similar effects on the physiological markers while also reducing hyperglycemia in the circulating hemolymph. On the signaling level, the high-sugar diet predictably had an elevated expression of the Drosophila insulin-like peptides 2, 3 and 5 and in the high-fat diet, an increase in fatty acid synthase, acetyl-CoA carboxylase and phosphoenolpyruvate carboxykinase expression. On both diets, Lf5221 and FA rescued gene expression, at different concentrations, to the level of controls. Examining the mechanistic gene expression, both Lf5221 and FA rescued expression of dFOXO and dTOR, but not dAkt indicating that FA produced by Lf5221 is acting on one of the downstream-signaling molecules from the insulin receptor, possibly dTOR: an overall energy regulator in flies and humans alike. The present study for the first time outlines a streamlined mechanism for how the gut microbiota communicates with the host’s energy-regulating metabolism. Proper supplementation with ferulic acid esterase active probiotics such as Lf5221 could potentially prevent or alleviate symptoms of metabolic syndrome and other energy-regulating diseases including diabetes, obesity and neurodegeneration.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords