alexa First Principles Study on Sino (N=14-18) and Si10-Mom(M
ISSN: 2376-130X

Journal of Theoretical and Computational Science
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

First Principles Study on Sino (N=14-18) and Si10-Mom(M=1-8) Clusters

Zhu Yuhong and Li Baoxing*

Department of Physics, Hangzhou Normal University, Hangzhou 310036, China

*Corresponding Author:
Li Baoxing
Department of Physics
Hangzhou Normal University
Hangzhou 310036, China
Tel: 086 571 28865282
E-mail: [email protected]

Received date: February 26, 2014; Accepted date: May 05, 2014; Published date: May 14, 2014

Citation: Y. H. Zhu, B.X. Li (2014) First Principles Study on SinO (n=14-18) and Si10-mOm(m=1-8) Clusters. J Theor Comput Sci 1: 113. doi:10.4172/2376-130X.1000113

Copyright: © 2014 Baoxing L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Combining the full-potential linear–muffin–tin–orbital molecular-dynamics (FP-LMTO-MD) and the Amsterdam Density Functional (ADF) with TZ2P basis set in conjunction with self-consistent-field (SCF), we have studied the geometric features and stabilities of the SinO (n=14-18) clusters.. The total binding energy Etot, gap of HOMO (highest-occupied molecular orbital)-LUMO (lowest-unoccupied molecular orbital) Eg, dipole moment μ and total constant volume heat capacity Cv(tot) were also calculated. The results show that the one dopant oxygen atom tends to occupy the edge or the surface position in the middle size silicon clusters (Sin, n=14-18). To further understanding the evolutionary tendency of the physical characteristics for the Si-O clusters with different composition, the Si10-mOm (m=1-8) clusters were also studied using the same methods. It was found that the structures of the Si10-mOm (m=1-8) clusters evolve from compact three dimensions to chain-like with increasing of the O proportion. The binding energy curve of Si10-mOm clusters with different m shows a dip at m=6, which suggests that an optimal proportion of O and Si atoms may exist in the Si10-mOm(m=1-8) clusters.

Keywords

Related Subjects

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords