alexa Forced Degradation Study of Monoclonal Antibody Using Two- Dimensional Liquid Chromatography
ISSN: 2157-7064

Journal of Chromatography & Separation Techniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Forced Degradation Study of Monoclonal Antibody Using Two- Dimensional Liquid Chromatography

An Y, Verma S, Chen Y, Yu S, Zhang Y, Kelner S, Mengisen S, Richardson D and Chen Z*

Sterile Product and Analytical Development, Merck Research Laboratories, Kenilworth, NJ, USA

*Corresponding Author:
Chen Z
Sterile Product and Analytical Development
Merck Research Laboratories, Kenilworth, NJ
USA
Tel: 022-34236789
E-mail: [email protected]

Received date: May 08, 2017; Accepted date: May 11, 2017; Published date: May 17, 2017

Citation: An Y, Verma S, Chen Y, Yu S, Zhang Y, et al (2017) Forced Degradation Study of Monoclonal Antibody Using Two-Dimensional Liquid Chromatography. J Chromatogr Sep Tech 8: 365. doi:10.4172/2157-7064.1000365

Copyright: ©2017 An Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, terminal cyclization, aggregation, and fragmentation. Forced degradation study is a common practice to assess the potential modifications and degradation pathways of mAbs upon extreme conditions, including light exposure and extreme local pH. The degraded samples are subject to characterization using a wide array of analyses, including ion exchange chromatography (IEC) for charge variants and size exclusion chromatography (SEC) for size variants. In this proof-of-concept study, a two-dimensional liquid chromatography (2D-LC) approach was successfully applied to mAb forced degradation samples for evaluation of size distribution in the IEC charge profile. The charge variant peaks in first-dimension (1D) IEC were fractioned by a heart-cutting schedule, and the integrated peak parking feature accommodated later-eluting 1D cuts when the previous ones were still under second-dimension (2D) analysis. Thus, for a singly IEC injection, all IEC fractions were acquired by the 2D for SEC analysis. This study demonstrated that 2D SEC was compatible with 1D IEC for 2D-LC analysis. The method sensitivity was sufficient to determine the aggregates and fragments in each individual IEC cut. The calculated total aggregates and fragments in the stressed mAb-1 samples were comparable to those detected by one dimensional SEC. Most importantly, the 2D IEC-SEC approach was capable of bridging the mAb charge and size variants in a real-time and efficient manner. It was observed that aggregates were enriched in the most basic region in the IEC charge profile, especially in the highly degraded samples. This is the first IEC-SEC 2D-LC application for intact antibody analysis as per the authors’ knowledge.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords