alexa From Solar Hydrogen to Desert Development: A Challengin
ISSN: 2157-7048

Journal of Chemical Engineering & Process Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

From Solar Hydrogen to Desert Development: A Challenging Approach

Hussein K Abdel-Aal*
Professor Emeritus of Chemical Engineering / Petroleum Operations, NRC, Cairo, Egypt (Retired)
Corresponding Author : Hussein K. Abdel-Aal
Professor Emeritus of Chemical Engineering / Petroleum Operations
NRC, Cairo, Egypt
Tel: 20237499028
E-mail: [email protected]
Received July 25, 2014; Accepted September 22, 2014; Published September 25, 2014
Citation: Abdel-Aal HK (2014) From Solar Hydrogen to Desert Development: A Challenging Approach. J Chem Eng Process Technol 5:209. doi:10.4172/2157-7048.1000209
Copyright: © 2014 Abdel-Aal HK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


This paper presents a novel approach for desert development, taking the Arab countries a model in our study. Solutions to make the most from the sun to turn our desert into useful and arable land are proposed. Saline water resources from sea or rejects from desalination plants (brines) are chemically processed to produce partially desalted water along with valuable chemical products. Solar hydrogen is a cornerstone in our system to produce ammonia, which has dual functions in the scheme. Ammonia represents a source of nitrogen for plants. It is used together with carbon dioxide in the chemical separation process of saline water.
For the Arab countries with an average solar intensity flux = 700 Watt/m2, an average sunshine hours of 3000 annually and only 1% of total land area for solar power generation, it is feasible to produce the equivalent of 184 × 106 tons of hydrogen yearly by water electrolysis. Ammonia gas synthesis takes place, using solar hydrogen and atmospheric nitrogen.
Experimental findings are reported by the author and co-workers. Separation of salt brine (from inland sources or from the sea) was carried out in a gas bubbler using a modified Solvay process to study the conversion of sodium chloride into chemical products (namely sodium carbonate and ammonium chloride). The highest conversion achieved of sodium chloride was 82.2%, and the balance makes partially desalted water. Magnesium chloride is obtained as a by-product. The role of hydrogen as a vector coupled with solar energy for desert development is schematically illustrated.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version