GET THE APP

..

Molecular and Genetic Medicine

ISSN: 1747-0862

Open Access

Glucosamine-induced ER Stress Accelerates Atherogenesis: A Potential Link between Diabetes and Cardiovascular Disease

Abstract

Vi T Dang, Daniel R Beriault, Arlinda Deng, Yuanyuan Shi and Geoff H Werstuck

Background: Cardiovascular disease is the leading cause of death worldwide and is responsible for three out of four deaths in diabetic individuals. Our lack of understanding of the molecular mechanisms linking diabetes and atherosclerosis impedes the development of effective treatment strategies. Hyperglycemia and glucosamine-supplementation have been shown to induce endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) in murine models of atherosclerosis. We hypothesize that diabetes/hyperglycemia promotes atherosclerosis by a mechanism involving glucosamine-induced ER stress/UPR activation and that attenuation of ER stress, using the chemical chaperone 4- phenylbutyric acid (4PBA), will slow the accelerated development of atherosclerosis.

Methods: Hyperglycemia was induced in female Apolipoprotein E-deficient (ApoE-/-) mice by multiple low-dose streptozotocin injections or by the introduction of the Ins2+/Akita mutation. Glucosamine-supplementation was achieved by adding different concentrations of glucosamine (0.625-5% w/v) to the drinking water of ApoE-/- mice. Subsets of mice from each group were also treated with 4PBA. The development of atherosclerosis was evaluated based on atherosclerotic lesion area and volume at the aortic sinus. Levels of protein O-linked N-acetylglucosamine (O-GlcNAc) and ER stress markers were determined in atherosclerotic lesions using immunohistochemistry and immunofluorescence staining.

Results: Hyperglycemic and glucosamine-supplemented mouse models showed similar increases in O-GlcNAc and ER stress/UPR activation levels in atherosclerotic lesions. Lesion area was not significantly different between the three models of accelerated atherosclerosis. Glucosamine supplementation at ≥ 2.5% (w/v) significantly increased lesional O-GlcNAc, UPR activation and atherosclerotic lesion area/volume, independent of changes in any measured metabolic parameters. 4PBA mitigated ER stress and attenuated accelerated atherosclerosis in both hyperglycemic and glucosamine-supplemented mouse models.

Conclusion: These findings suggest that hyperglycemia promotes accelerated atherosclerosis by a mechanism involving glucosamine-induced ER stress. Accelerated atherosclerosis can be attenuated in hyperglycemic ApoE-/- mice by reducing ER stress levels.

PDF

Share this article

Google Scholar citation report
Citations: 3919

Molecular and Genetic Medicine received 3919 citations as per Google Scholar report

Molecular and Genetic Medicine peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward