alexa Glucosamine-induced ER Stress Accelerates Atherogenesis: A Potential Link between Diabetes and Cardiovascular Disease
ISSN: 1747-0862

Journal of Molecular and Genetic Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Glucosamine-induced ER Stress Accelerates Atherogenesis: A Potential Link between Diabetes and Cardiovascular Disease

Vi T Dang, Daniel R Beriault, Arlinda Deng, Yuanyuan Shi and Geoff H Werstuck*

Thrombosis and Atherosclerosis Research Institute, McMaster University, Canada

Corresponding Author:
Geoff H Werstuck
Thrombosis and Atherosclerosis Research Institute
McMaster University, Hamilton, Canada
Tel: 9055212100
Fax: 9055771427
E-mail: [email protected]

Received date: November 25, 2015 Accepted date: December 24, 2015 Published date: December 27, 2015

Citation:Dang VT, Beriault DR, Deng A, Shi Y, Werstuck GH (2015) Glucosamine-induced ER Stress Accelerates Atherogenesis: A Potential Link between Diabetes and Cardiovascular Disease. J Mol Genet Med 9:197. doi:10.4172/1747-0862.1000197

Copyright: ©2015 Dang VT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Background: Cardiovascular disease is the leading cause of death worldwide and is responsible for three out of four deaths in diabetic individuals. Our lack of understanding of the molecular mechanisms linking diabetes and atherosclerosis impedes the development of effective treatment strategies. Hyperglycemia and glucosaminesupplementation have been shown to induce endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) in murine models of atherosclerosis. We hypothesize that diabetes/hyperglycemia promotes atherosclerosis by a mechanism involving glucosamine-induced ER stress/UPR activation and that attenuation of ER stress, using the chemical chaperone 4- phenylbutyric acid (4PBA), will slow the accelerated development of atherosclerosis. Methods: Hyperglycemia was induced in female Apolipoprotein E-deficient (ApoE-/-) mice by multiple low-dose streptozotocin injections or by the introduction of the Ins2+/Akita mutation. Glucosamine-supplementation was achieved by adding different concentrations of glucosamine (0.625-5% w/v) to the drinking water of ApoE-/- mice. Subsets of mice from each group were also treated with 4PBA. The development of atherosclerosis was evaluated based on atherosclerotic lesion area and volume at the aortic sinus. Levels of protein O-linked N-acetylglucosamine (O-GlcNAc) and ER stress markers were determined in atherosclerotic lesions using immunohistochemistry and immunofluorescence staining. Results: Hyperglycemic and glucosamine-supplemented mouse models showed similar increases in O-GlcNAc and ER stress/UPR activation levels in atherosclerotic lesions. Lesion area was not significantly different between the three models of accelerated atherosclerosis. Glucosamine supplementation at ≥ 2.5% (w/v) significantly increased lesional O-GlcNAc, UPR activation and atherosclerotic lesion area/volume, independent of changes in any measured metabolic parameters. 4PBA mitigated ER stress and attenuated accelerated atherosclerosis in both hyperglycemic and glucosamine-supplemented mouse models. Conclusion: These findings suggest that hyperglycemia promotes accelerated atherosclerosis by a mechanism involving glucosamine-induced ER stress. Accelerated atherosclerosis can be attenuated in hyperglycemic ApoE-/- mice by reducing ER stress levels.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords