GET THE APP

Journal of Developing Drugs

Journal of Developing Drugs
Open Access

ISSN: 2329-6631

+44 1478 350008

Abstract

Green Synthesis of Silver Nanoparticles from Glycyrrhiza glabra Root Extract for the Treatment of Gastric Ulcer

Sreelakshmy V, Deepa MK and Mridula P

Glycyrrhiza glabra is a traditional herb which grows in various parts of the world, which have been used for the treatment of various diseases like gastric ulcer. Many reports have been published about the biogenesis of silver nanoparticles using Glycyrrhiza glabra, but green synthesized silver nanoparticles from Glycyrrhiza glabra has not yet been investigate the in-vitro anti-ulcer activity against H. pylori. In the present study was aimed to investigate the in-vitro anti-ulcer activity of green-synthesised silver nanoparticles (AgNPs) from Glycyrrhiza glabra root extract. The green synthesized of silver nanoparticles were characterized by UV-Visible Spectroscopy, X-ray diffraction (XRD), TEM, and FT-IR Analysis. UV-VIS Spectral analysis of the green synthesised nanoparticles was observed a sharp peak at 404 nm indicates the formation of silver nanoparticles. We successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 7 nm to 45 nm with an average size of 19 nm. The crystalline natures of Ag nanoparticles were confirmed from the XRD analysis. FTIR analysis was carried out to identify the possible biomolecules in Glycyrrhiza glabra root responsible for capping leading to efficient stabilization of the silver nanoparticles. The in-vitro antiulcer activities of synthesized silver nanoparticles were studied by Agar disc diffusion method and Micro broth dilution method. In Agar disc diffusion method showed the activity against H. pylori at the concentration of 500 μg/ml, which exhibit the most potent concentration of silver nanoparticles of gastric Cytoprotective anti-ulcer. In micro broth dilution method, The Minimum Inhibitory Concentration (MIC) of silver nanoparticles by visual examination was found to be 250 μg/ml.

Top