alexa Hadoop Based Parallel Framework for Feature Subset Selection in Big Data
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Hadoop Based Parallel Framework for Feature Subset Selection in Big Data

Revathi.L1, A.Appandiraj2
  1. P.G Student, Department of Computer Engineering, Ganadipathy Tulsi’s Jain Engineering College, Vellore, Tamil nadu, India1
  2. Assistant Professor, Department of Computer Engineering, Ganadipathy Tulsi’s Jain Engineering College India, Vellore, Tamilnadu,, India
Related article at Pubmed, Scholar Google
 

Abstract

It is the era of Big Data. Since scale of data is increasing every minute, handling massive data becomes important in this era. Massive data poses a great challenge for classification. High dimensionality of modern massive dataset has provided a considerable challenge to clustering approaches. The curse of dimensionality can make clustering very slow, and, second, the existence of many irrelevant features may not allow the identification of the relevant underlying structure in the data. Feature selection is the most important part of the clustering process that involves identifying the set of features of a subset, at which they produce accurate and accordant results with the original set of features. Designing traditional machine learning algorithms and data mining algorithms with Map Reduce Programming is necessary in dealing with massive data sets. Map Reduce is a parallel processing framework for large datasets and Hadoop is its open-source implementation. The objective of this paper is to implement FAST clustering algorithm with Map Reduce programming to remove irrelevant and redundant features. Following preprocessing, cluster based map-reduce feature selection approach is implemented for effective outcome of features

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords