alexa HEV Optimal Battery State of Charge Prediction: A Time Series Inspired Approach
ISSN: 2167-7670

Advances in Automobile Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

HEV Optimal Battery State of Charge Prediction: A Time Series Inspired Approach

Wisdom Enang*
University of Bath, Bath, UK
*Corresponding Author : Enang W
University of Bath, UK
Tel: +44 (0)1225 388388
E-mail: [email protected]
Received: February 10, 2016; Accepted: March 03, 2016; Published: March 07, 2016
Citation: Enang W (2016) HEV Optimal Battery State of Charge Prediction: A Time Series Inspired Approach. Adv Automob Eng 5:133 doi:10.4172/2167-7670.1000133
Copyright: © 2016 Enang W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Fuel efficiency in hybrid electric vehicles requires a fine balance between combustion engine usage and battery energy, using a carefully designed control algorithm. Owing to the transient nature of HEV dynamics, driving conditions prediction, have unavoidably become a vital part of HEV energy management. The use of vehicle onboard telematics for driving conditions prediction have been widely researched and documented in literature, with most of these studies identifying high equipment cost and lack of route information (for routes unfamiliar to the GPS) as factors currently impeding the commercialization of predictive HEV control using telematics. In view of this challenge, this study inspires a look-ahead HEV energy management approach, which uses time series predictors (neural networks or Markov chains), to forecast future battery state of charge, for a given horizon, along the optimal front (optimal battery state of charge trajectory). The primary contribution of this paper is a detailed theoretical appraisal and comparison of the neural network and Markov chain time series predictors over different driving scenarios (FTP72, SC03, ARTEMIS U130 and WLTC 3 driving cycles). Based on the analysis performed in this study, the following useful inferences are drawn: 1. Prediction accuracy decreases massively and disproportionately on average with increased prediction horizon for multi-input neural networks, 2. In a single-input/single-horizon prediction network, the performance of both the neural network and Markov chain predictors are similar and near optimal, with a mean absolute percentage error of less than 0.7% and a root mean square error of less than 0.6 for all driving cycles analysed, 3. Markov chains appeal as a promising time series predictor for online vehicular applications, as it impacts the relative advantage of high precision and moderate computation time.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords