alexa HPLC Analysis of Monomer Release from Conventionally and High Temperature High-Pressure Polymerised Urethane Dimethacrylate Intended for Biomedical Applications
ISSN: 2157-7064

Journal of Chromatography & Separation Techniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

HPLC Analysis of Monomer Release from Conventionally and High Temperature High-Pressure Polymerised Urethane Dimethacrylate Intended for Biomedical Applications

Mie-leng Tang1, Jean-François Nguyen1, Michaël Sadoun1 and N Dorin Ruse2*

1Unité de Recherches Biomatériaux Innovants et Interfaces (URB21-EA4462), Faculté de chirurgie dentaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France

2Faculty of Dentistry, University of British Columbia, Vancouver, Canada

*Corresponding Author:
N Dorin Ruse
Faculty of Dentistry
University of British Columbia
Vancouver, Canada
Tel: 1-604-822-4438
Fax: 1-604-822-3562
E-mail: [email protected]

Received date: May 15, 2014; Accepted date: June 27, 2014; Published date: June 30, 2014

Citation: Tang M, Nguyen J, Sadoun M, Dorin Ruse N (2014) HPLC Analysis of Monomer Release from Conventionally and High Temperature High-Pressure Polymerised Urethane Dimethacrylate Intended for Biomedical Applications. J Chromatograph Separat Techniq 5:227. doi:10.4172/2157-7064.1000227

Copyright: © 2014 Tang M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Since monomer release poses significant biocompatibility concerns, the aim of this study was to determine, using HPLC, and compare monomer release from conventionally and high-temperature high-pressure (HT/HP) polymerized urethane dimethacrylate (UDMA) for biomedical applications. Three polymers were made: a) a control, obtained by conventional thermo-polymerization of UDMA with 0.5% (w) benzoyl peroxide (BPO) as initiator; b) an experimental, obtained by HT/HP polymerization of UDMA with 0.5% (w) BPO; and c) another experimental, obtained by HT/HP polymerization of UDMA without initiator. Bar-shaped polymer specimens were immersed in HPLC-grade 75% ethanol for 1 d, 7 d, 14 d, and 28 d prior to monomer determination by HPLC with an Agilent 1260 Infinity Quaternary LC. A Poroshell 120 EC-C18 (4.6x50 mm; 2.7μm) column and elution solvent consisting of HPLC-grade 65% acetonitrile in water, with a flow rate of 1 μL/min, were used. A calibration curve was constructed using standard UDMA solutions in the range of 1x10-5 M to 1x10-7 M. The limits of detection (LOD=2.62x10-6 M) and quantification (LOQ=7.65x10-6 M) for UDMA were determined. The accuracy of the method was confirmed by standard additions. Monomer release was statistically higher in the control group at all-time intervals; the lowest release was detected in the BPO-containing HT/HP polymerized group. The results suggested that there was a significant reduction in free monomer content in HT/HP polymerized UDMA and that polymers obtained under HT/ HP conditions could be more biocompatible

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords