alexa Identification of NuoX and NuoY Ligand Binding Specific
ISSN: 2155-9597

Journal of Bacteriology & Parasitology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Identification of NuoX and NuoY Ligand Binding Specificity in the Campylobacter Jejuni Complex I

Lirio I. Calderon-Gomez1, Christopher J. Day1, Lauren E. Hartley-Tassell1, Jennifer C. Wilson1, George L. Mendz2 and Victoria Korolik1*

1Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia

2School of Medicine, The University of Notre-Dame Australia, NSW, Sydney, Australia

*Corresponding Author:
Professor Victoria Korolik
Institute for Glycomics, Griffith University
Gold Coast, Queensland, 4222, Australia
Tel: +61755528321
E-mail: [email protected]

Received Date: April 05, 2017; Accepted Date: April 21, 2017; Published Date: April 26, 2017

Citation: Calderon-Gomez LI, Day CJ, Hartley-Tassell LE, Wilson JC, Mendz GL, et al. (2017) Identification of nuoX and NuoY Ligand Binding Specificity in the Campylobacter Jejuni Complex I. J Bacteriol Parasitol 8:307. doi: 10.4172/2155-9597.1000307

Copyright: © 2017 Calderon-Gomez LI, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The components of the proton pump NADH:ubiquinone (Complex I) of the respiration pathway have been identified in the C. jejuni genome. However, the paradigm genes nuoE and nuoF encoding subunits of the NADH dehydrogenase module of Complex I are absent. Instead the genes cj1575c and cj1574c encoding NuoX and NuoY are present in the loci corresponding to nuoE and nuoF, respectively. Bioinformatics analyses showed the presence of nuoX and nuoY homologues in all sequenced strains of C. jejuni and in other Campylobacter species, as well as the presence of orthologues in other ɛ-Proteobacteria. To understand the involvement of the NuoX and NuoY proteins in the respiration of C. jejuni and to characterize their ligand binding specificity and affinity, a tricarboxylic acid cycle array was developed as a tool to identify proteins that can bind to intermediates of this cycle as well as other metabolites. This array showed that NuoX bound FAD2+, and NuoY bound FAD2+ and the electron donors malate and lactate. Saturation Transfer Difference Nuclear Magnetic Resonance studies confirmed the NuoY binding ligands, and suggested that the flavin moiety of FAD2+ interacted more strongly with NuoY than the adenine moiety. Affinity data generated by Surface Plasmon Resonance indicated that NuoY bound to FAD2+ with a KD of 337 nM; NuoX and NuoY had an affinity for NADH of a KD of 403 nM and 478 nM, respectively, and a ten-fold lower affinity for both NAD+ and FAD2+. The data suggested that the flavin-adenine dinucletoide could be bound preferentially to the NAD in the Complex I of C. jejuni.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords