alexa Identifying Local Structural and Optical Derangement in the Neural Retina of Individuals with Type 1 Diabetes
ISSN: 2155-9570

Journal of Clinical & Experimental Ophthalmology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Identifying Local Structural and Optical Derangement in the Neural Retina of Individuals with Type 1 Diabetes

Delia DeBuc1*, Erika Tatrai2, Lenke Laurik2, Boglarka Eniko Varga2, Veronika Olvedy2, Aniko Somogyi3, William E. Smiddy1 and Gabor Mark Somfai2
1Department of Ophthalmology, University of Miami, Miami, FL, USA
2Department of Ophthalmology, Semmelweis University, Budapest, Hungary
32nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
Corresponding Author : Delia Cabrera DeBuc
Bascom Palmer Eye Institute
University of Miami, Miller School of Medicine
1638 NW Tenth Avenue, Miami, FL 33136, USA
Tel: 305-482-4376
Fax: 305-326-6547
E-mail: [email protected]
Received June 03, 2013; Accepted August 02, 2013; Published August 08, 2013
Citation: DeBuc D, Tatrai E, Laurik L, Varga BE, Olvedy V, et al. (2013) Identifying Local Structural and Optical Derangement in the Neural Retina of Individuals with Type 1 Diabetes. J Clin Exp Ophthalmol 4:289. doi:10.4172/2155-9570.1000289
Copyright: © 2013 DeBuc D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
 

Abstract

Background: To identify local structural and optical derangement in the neural retina of individuals with type 1 diabetes having early diabetic retinopathy (DR) and compare with healthy non-diabetic controls and type 1 diabetic individuals having no DR.

Methods: Optical coherence tomography (TDOCT) examination was performed on a total of 74 healthy eyes, 38 eyes with type 1 diabetes mellitus (DM) with no retinopathy and 43 eyes with mild DR (MDR). A total of 6 intraretinal layers were segmented on OCT images. Thickness and reflectance-based measurements were extracted for each OCT scan using features measured locally for each intraretinal layer.

Results: In the analysis where local measures were averaged in the separated macular regions outside the foveola, the mean thickness values of the outer segment of photoreceptors (OS) in the perifoveal region, ganglion cell and inner plexiform layer (GCL+IPL) complex in the parafoveal and outer plexiform layer (OPL) in the foveal region were significantly smaller (13%, 8% and 36%; respectively, p<0.001) when comparing MDR eyes with controls. The mean thickness values of the OPL (foveal region, 27%, p<0.001) and the OS (parafoveal (24%) and perifoveal (23%), p<0.001) were significantly smaller when comparing MDR with DM eyes. The reflectance-based measures were significantly smaller for all layers in MDR eyes compared with healthy and DM eyes (7-36%, p<0.001).

Conclusions: Our results show OCT is capable of detecting selective layer thinning and that the optical properties extracted from OCT images add significant evidence to the morphological information directly provided by OCT. It also suggests that the outer segment of the photoreceptor layer may be vulnerable in both type 1 diabetic individuals with and without early DR. Our results might also indicate that an early sign of vascular alteration development could be detected by investigating the changes in optical properties and thickness of the OPL.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords