alexa IGF-1 Mediates Exercise-Induced Phospholipid Alteration in the Murine Skin Tissues | OMICS International | Abstract
ISSN: 2155-9600

Journal of Nutrition & Food Sciences
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

IGF-1 Mediates Exercise-Induced Phospholipid Alteration in the Murine Skin Tissues

Yu Jiang1, Haitian Ma2, Xiaoyu Su1, Jie Chen1, Jianteng Xu1, Joseph Standard1, Dingbo Lin1 and Weiqun Wang1*

1Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA

2College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

*Corresponding Author:
Weiqun Wang
Department of Human Nutrition, Kansas State University
Manhattan, KS 66506, USA
E-mail: [email protected]

Received date: May 11, 2012; Accepted date: June 25, 2012; Published date: June 30, 2012

Citation: Jiang Y, Ma H, Su X, Chen J, Xu J, Standard J (2012) IGF-1 Mediates Exercise-Induced Phospholipid Alteration in the Murine Skin Tissues. J Nutr Food Sci S2:003. doi: 10.4172/2155-9600.S2-003

Copyright: © 2012 Jiang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

We previously demonstrated that exercise with an iso-caloric diet significantly reduced body weight and skin carcinogenesis in correspondence with lower plasma IGF-1 levels and IGF-1-dependent phospholipid signaling. This study was thus designed to test the hypothesis that IGF-1 reduction plays a causal role in exercise-induced phospholipid changes. SENCAR mice were randomly assigned to one of the following three groups for 12 weeks: ad libitum-fed sedentary control, exercise but pair-fed the amount of the control (PE), and PE with IGF-1 injection (PE+IGF-1). Treadmill exercise was conducted at 13.4 m/min for 90 min/d, 5 d/week. In the last two weeks IGF1 was i.p. injected (10 μg/g B.W.) twice per week. Both body weight and plasma IGF-1 levels were significantly reduced in PE mice when compared with the control. IGF-1 injection did not affect body weight, or the plasma levels of IGF-1 at the end of the experiment due to a rapid degradation with a half-life of 3.4 hrs. Of the 338 phospholipid species detected in the skin tissues by electron spray ionization tandem mass spectrometry, 21 were significantly changed in PE mice compared to control. Fourteen of the altered 21 species in PE mice were reversed by IGF-1 injection, including the most abundant phosphatidylinositol (PI) 38:4, a substrate for lipid PI3K signaling. Western Blot Analysis further showed the reduced PI3K, but not IGF-1R, in PE mice was also reversed by IGF-1 restoration. Overall, these data provided evidence that exercise-induced reduction of IGF-1 is required in mediating the alteration of phospholipid profile and PI-related PI3K signaling.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

kactakapaniyor.com

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

Taktube

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

porn sex

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

Gaziantep Escort

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

sikiş

[email protected]

1-702-714-7001Extn: 9037

instafollowers

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

mp3 indir

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

putlockers

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

seks

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7