alexa Impact of Different Plant Secondary Metabolites Additio
ISSN: 2167-7972

Fermentation Technology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Impact of Different Plant Secondary Metabolites Addition: Saponin, Tannic Acid, Salicin and Aloin on Glucose Anaerobic Co-Digestion

Philippe Mambanzulua Ngoma1,2*, Serge Hiligsmann1, Eric Sumbu Zola3, Marc Ongena1and Philippe Thonart1

1Walloon Center of Industrial Biology (CWBI), Gembloux Agro-Bio Tech, University of Liege, Belgium

2Faculty of Pharmaceutical Sciences, University of Kinshasa, Democratic Republic of Congo

3Faculty of Agricultural Sciences, University of Kinshasa, Democratic Republic of Congo

*Corresponding Author:
Philippe Mambanzulua Ngoma
Walloon Center of Industrial Biology (CWBI)
Gembloux Agro-Bio Tech, University of Liege 2 Passage des Déportés,
5030 Gembloux, Belgium
Tel: 0032485963679
E- mail: [email protected], [email protected]

Received Date: August 25, 2014, Accepted Date: April 04, 2015, Published Date: April 08, 2015

Citation: Hiligsmann S, Zola S E, Ongena M, Thonart P (2015) Impact of Different Plant Secondary Metabolites Addition: Saponin, Tannic Acid, Salicin and Aloin an Glucose Anaerobic Co-Digestion. Ferment Technol 4:113. doi: 2167-7972.1000113

Copyright:© 2015 Ngoma PM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Vegetal waste and some wastewater of agro-food industries contain plant secondary metabolites (PSMs). It was showed in nutritional researches that these substances such as saponins and tannins reduced the methane production in the rumen. To our knowledge no study was done in the waste treatment domain to evaluate the inhibitory effect of the principal glycosidic metabolites from the wastewater or vegetal waste on their own methaneproducing anaerobic digestion. Therefore in this paper BMP tests were carried out at 30°C with four commercial PSMs (CPSMs) in mixture with glucose monohydrate (Gl) used as control sample. These CPSMs were saponin from Quilaja saponaria Molina Pract (Sap), tannic acid (Tan), salicin (Sal) and aloin from Curacao Aloe (Alo) representing respectively saponins, tannins, alcoholic glycosides and anthraquinones sources. Acidogenesis and acetogenesis were recorded for all the mixtures of Gl and CPSMs; however their conversion rates decreased with the increase of the concentrations of CPSMs. By contrast, the methanogenesis was inhibited at concentrations of CPSMs above 0.3 g/l. The inhibition degree for aromatic compounds on the anaerobic biodegradation of Gl seemed directly to depend on the numbers of benzene rings in the medium and the synergism. Thus, the highest inhibition of the biogas production from Gl was recorded for Alo, followed by Sap, Tan and Sal. However, the highest inhibition of the methane production from Gl was recorded with Sap, Alo, Tan and Sal. It was supposed that the toxicity potentials of these PSMs on their own biomethanization would be in following decreasing order: Sap or Alo, Tan and Sal. Therefore, the concentration of PSMs alone or in mixture in a digester should be below 0.3 g/l for a better methanization.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords