alexa Improved Gastrodin Production of Biotransformation Conditions by Cultured Cells Armillaria luteo-virens Sacc and the Anti-inflammatory Activity In Vivo | Abstract
ISSN: 2161-0444

Medicinal Chemistry
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Improved Gastrodin Production of Biotransformation Conditions by Cultured Cells Armillaria luteo-virens Sacc and the Anti-inflammatory Activity In Vivo

Yong-Wu Niu1, Hong-Ji Li1, Ya-Chen Dong1, De-Qin Xu2 and Qi-He Chen1*

1Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China

2College of Chemistry and Biology Science, Lishui University, Lishui 323000, China

*Corresponding Author:
Qi-He Chen
Department of Food Science and Nutrition
Zhejiang University, Yuhangtang Rd. 866
Hangzhou 310058, China
Tel: 0086-571-86984316
E-mail: [email protected]

Received date: February 19, 2016 Accepted date: March 29, 2016 Published date: March 31, 2016

Citation: Niu YW, Li HJ, Dong YC, Xu DQ, Chen QH (2016) Improved Gastrodin Production of Biotransformation Conditions by Cultured Cells Armillaria luteo-virens Sacc and the Anti-inflammatory Activity In Vivo. Med chem (Los Angeles) 6:211-217. doi:10.4172/2161-0444.1000348

Copyright: © 2016 Niu YW, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Gastrodin (GAS), the main bioactive component of G. elata Blume, has important pharmaceutical and functional activities. The aim of this study is to produce GAS from p-2-hydroxybenzyl alcohol (HBA) through biotransformation. The conversion of exogenous HBA into GAS compound was conducted using cell suspension cultures of Armillaria luteo-virens Sacc. The bioconversion conditions were fully optimized with response surface methodology (RSM), turning out that the optimal transformation conditions composed of 3 mg/mL HBA, 6.5 g/30 mL inoculums level, 1.5% Tween 80, pH 4.5, and transformation temperature at 23°C. Under the optimized conditions, the conversion productivity of GAS reached the highest value (5.65 ± 0.45 mg/L). Verified experiments further validated that the optimized conditions were suitable for predicting the actual process of HBA transformation in the resting-cell system. The bioconversion kinetics model was as well simulated with Michaelis–Menten equation, which showing the suitability. The present study proposed the biotransformation pathway of HBA into GAS by resting cells transformation, indicating that the biotransformation process involved glucosylation reaction. Furthermore, Imprinting Control Region (ICR) mice in vivo demonstrated that the identified gastrodin possessed a significant anti-inflammatory activity. The fundamental data in the present work provides an efficient way to produce GAS through the whole-cells biocatalysis.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version