alexa In Silico Study of the Selective Inhibition of Bacterial Peptide Deformylases by Several Drugs
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

In Silico Study of the Selective Inhibition of Bacterial Peptide Deformylases by Several Drugs

Abdelouahab Chikhi* and Abderrahmane Bensegueni

Department of biochemistry-microbiology Faculty of natural andlife sciences, Mentouri University, Constantine, Algeria

*Corresponding Author:
Dr. Abdelouahab Chikhi
Department of biochemistry- microbiology Faculty of natural and life sciences
Mentouri University, Constantine, Algeria
Tel: + 213-793-112-547
E-mail: [email protected], [email protected]

Received Date: December 29, 2009; Accepted Date: February 13, 2010; Published Date: February 15, 2010

Citation: Chikhi A, Bensegueni A (2010) In Silico Study of the Selective Inhibition of Bacterial Peptide Deformylases by Several Drugs. J Proteomics Bioinform 3: 061-065. doi: 10.4172/jpb.1000122

Copyright: © 2010 Chikhi A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



To counter increasing levels of pathogen resistance new classes of antibiotics are needed without delay. The metalloenzyme peptide deformylase (PDF) correspond to one of the most promising bacterial targets in the search for novel mode of antibiotics action and was firstly selected as a specific bacterial target. Peptide analogs were developed as inhibitors containing a hydroxamate or formyl- hydroxylamine as metal interacting group, and used as inhibitors with in vitro activity against a broad spectrum of organisms and successful antibacterial activity in vivo that is harmonizing with good pharmacokinetic properties and excellent tolerability in diverse species, but a human homologue was recently discovered. A new strategy for selecting highly efficient compounds with low inhibition effect against human PDF was developed. An original class of small, non-peptidic inhibitors of peptide deformylase (PDF) as potent antibiotics such as indol-group and its derivatives with the same mode of action in vivo as previously identified PDF inhibitors but without the apoptotic effects of these inhibitors in human cells, has been discovered. This study has confirmed the selective action of these compounds on bacterial PDFs by docking method using the autodock program. Indeed, a good correlation between IC50 and deltaG values of different complexes PDF-inhibitors was observed. The evaluation of the various molecular properties of these inhibitors lets us conclude that all these compounds are most likely drugable.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version