alexa In Vitro Rooting and Acclimatization of Micropropagated
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

In Vitro Rooting and Acclimatization of Micropropagated Elite Sugarcane (Saccharum officinarum L.)Genotypes - N52 and N53

Melaku Tesfa1*, Belayneh Admassu2 and Kassahun Bantte3

1Ethiopian Sugar Corporation Research and Training Division, Biotechnology Research Team, Wonji Research Center, P.O Box 15, Wonji, Ethiopia

2National Agricultural Biotechnology Research Program Holetta Agricultural Research Center

3Jimma University College of Agriculture and Veterinary Medicine, Jimma, Ethiopia

Corresponding Author:
Melaku Tesfa
Ethiopian Sugar Corporation Research and Training Division
Biotechnology Research Team, Wonji Research Center
P.O Box 15, Wonji, Ethiopia
Tel: +251913241485
E-mail: [email protected]

Received date: January 19, 2016; Accepted date: February 04, 2016; Published date: February 11, 2016

Citation: Tesfa M, Admassu B, Bantte K (2016) In Vitro Rooting and Acclimatization of Micropropagated Elite Sugarcane (Saccharum officinarum L.)Genotypes - N52 and N53. J Tissue Sci Eng 7:164. doi:10.4172/2157-7552.1000164

Copyright: © 2016 Tesfa M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Availability of sufficient quantity and quality of sugarcane planting materials from conventional seed source is one of the major challenges in the Ethiopian sugar estates. To circumvent this challenge, tissue culture technology is found to be the best alternative for which in vitro propagation protocol is a key pre-request. Thus, the present study was aimed to optimize protocol for in vitro rooting and acclimatization of two elite sugarcane genotypes i.e., N52 and N53. Experiments were laid out in a completely randomized design with factorial treatment arrangements. Half strength MS liquid media supplemented with combination of Sucrose (0, 40, 50, 60 and 70 g/l) and NAA (0,3,5 and 7 mg/l) along with two sugarcane genotypes (N52, N53) were used for rooting while substrate containing sand, soil and farmyard manure in six different ratios (1:1:0, 1:1:1, 1:2:1, 2:1:1, 1:1:2 and 1:2:0) were used for acclimatization. With regard to in vitro rooting, ½ strength liquid MS medium + 50 g/l sucrose + 3 mg/l NAA induced the highest rooting (100%) with 23.5 ± 1.29 average root number per shoot and 4.95 cm ± 0.06 cm root length in genotype N52 while 5 mg/l NAA + 50 g/l sucrose induced the highest (100%) rooting response with an average of 21.76 ± 0.57 root number per shoot with 4.54 cm ± 0.06 cm root length in sugarcane genotype N53. In acclimatization, best survival rate (94% in N52 and 100% in N53) was achieved on substrate mixtures containing sand + soil in 1:1: ratios. Thus, it can be deduced that this protocol can be used successfully for in vitro rooting and acclimatization of these genotypes.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords