alexa Inactivation and Disinfection of Zika Virus on a Nonpor
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Inactivation and Disinfection of Zika Virus on a Nonporous Surface

Cameron Wilde1, Zheng Chen1, Tanya Kapes1, Cory Chiossone1, Salimatu Lukula1, Donna Suchmann1, Raymond Nims2 and S Steve Zhou1*

1MicroBioTest, A division of Microbac Laboratories, Sterling, VA, USA

2RMC Pharmaceutical Solutions, Inc., Longmont, CO, USA

*Corresponding Author:
S Steve Zhou
MicroBioTest, a division of Microbac Laboratories
Sterling, USA
Tel: +1 571-926-8216
E-mail: [email protected]

Received date: September 16, 2016; Accepted date: September 28, 2016; Published date: October 06, 2016

Citation: Wilde C, Chen Z, Kapes T, Chiossone C, Lukula S, et al. (2016) Inactivation and Disinfection of Zika Virus on a Nonporous Surface. J Microb Biochem Technol 8:422-427. doi: 10.4172/1948-5948.1000319

Copyright: © 2016 Wilde C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The zika virus (ZIKV), an emergent arbovirus within the flavivirus family, is of public health concern due to the lack of a vaccine and possibility of teratogenic effects in infected pregnant women. The flaviviruses are enveloped, and it might be expected that inactivation methods for enveloped viruses in general might be effective for ZIKV. We have investigated a number of physical and chemical inactivation approaches using both low protein (5% serum) and 90% blood organic loads present during drying of virus onto carriers. ZIKV in 90% blood displayed ~0.06 log10 per hour inactivation over 8 h, while virus in 5% serum was inactivated at a much higher rate (~0.5 log10 per h). ZIKV was susceptible to dry heat treatment (56°C–60°C) when dried in 5% serum, but less so when dried in 90% blood. A quaternary ammonium/alcohol-based product and 70% isopropyl alcohol caused complete (>3.5 and >5 log10, respectively) inactivation of ZIKV in 15 s regardless of the organic load. Efficacy of inactivation of ZIKV by chlorine was highly dependent on the organic load at time of drying, with complete (>4 log10) inactivation being observed in 15 s by 500 ppm chlorine at 5% serum. Inactivation in the presence of 90% blood required 5,000 ppm chlorine to achieve >2 log10 inactivation, and 10,000 ppm chlorine to achieve >3 log10. Peracetic acid (1,000 ppm) inactivation also displayed a striking dependence on organic load, with complete (>4 log10) inactivation observed in 15 s at 5% serum and <1.5 log10 reduction in 5 minutes in a 90% blood matrix. When suspended in solutions of pH 4.0 or pH 10.0 at time of drying, ZIKV displayed <1.5 log10 reduction in 5 min, regardless of organic load. In conclusion, ZIKV displays susceptibility to commonly employed disinfectants similar to that of other flaviviruses.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version