alexa Influence of Fly Ash on the Properties of Self-Compacti
ISSN: 2472-0437

Journal of Steel Structures & Construction
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Influence of Fly Ash on the Properties of Self-Compacting Fiber Reinforced Concrete

Abdullah Mohsen Ahmed Zeyad1* and Abdullah Mustafa Saba2

1Civil Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia

2Materials Engineering, College of Engineering, Zagazig University, Zagazig, Egypt

*Corresponding Author:
Abdullah Mohsen Ahmed Zeyad
Civil Engineering, College of Engineering
Jazan University, Jazan, Saudi Arabia
Tel: 506977655
E-mail: [email protected]

Received Date: May 21, 2017; Accepted Date: May 24, 2017; Published Date: May 28, 2017

Citation: Zeyad AMA, Saba AM (2017) Influence of Fly Ash on the Properties of Self-Compacting Fiber Reinforced Concrete. J Steel Struct Constr 3: 128. doi: 10.4172/2472-0437.1000128

Copyright: © 2017 Zeyad AMA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Self-compacting concrete (SCC) has high flow ability and high resistance to segregation and bleeding. These characteristics facilitate the mixing, casting and finishing of SCC without using compacting or vibrating machines. Adding mineral admixtures, such as fly ash (FA), and superplasticizers improves SCC properties by preventing segregation and bleeding and by increasing rheological parameters. SCC requires high flow ability under the influence of self-weight to completely fill all mold parts for full compaction. This paper discusses the results of an experimental investigation on the properties of SCC and self-compacting fiber reinforced concrete (SCFRC) mixtures with the inclusion of polypropylene fibers (PFs) and containing FA at replacement rates of 0%, 20%, 40%, and 60 % cement mass. The compressive, flexural, and split tensile strengths of the prepared concrete samples were investigated at ages of 7, 14, 28, and 90 days. The workability of fresh concrete mixtures was also studied through segregation, bleeding, slump flow, slump flow T50, L-box V-funnel T5, and V-funnel tests. Results showed that the best properties of fresh SCCs were obtained when FA was added at replacement rates of 20% and 40% cement mass. In addition, the inclusion of PFs at a volumetric ratio of 0.22% decreased segregation and bleeding and improved the flexural and tensile strengths of SCFRCs.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version