alexa Inhibition of Fungal Growth and Fusarium Toxins by Sele
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Inhibition of Fungal Growth and Fusarium Toxins by Selected Cultures of Lactic Acid Bacteria

Nanis H Gomah1* and Abdel Naser A Zohri2

1Dairy Department, Faculty of Agriculture, Assiut University, Egypt

2Botany and Microbiology Department, Faculty of Science, Assiut University, Egypt

*Corresponding Author:
Nanis H Gomah
Dairy Department
Faculty of Agriculture
Assiut University, Egypt
Tel: +201221764655
E-mail: [email protected]

Received Date: July 28, 2014; Accepted Date: September 10, 2014; Published Date: September 17, 2014

Citation: Gomah NH, Zohri ANA (2014) Inhibition of Fungal Growth and Fusarium Toxins by Selected Cultures of Lactic Acid Bacteria. J Microbial Biochem Technol S7:001 doi: 10.4172/1948-5948.S7-001

Copyright: © 2014 Gomah NH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

 

Abstract

Two species of Lactobacilli (Lactobacillus rhamnosus and Lactobacillus paracasie subsp. paracasie) were tested for their ability to inhibit growth and mycotoxins production by three species of Fusarium, (F. graminearum, F. culmorum and F. proliferation) which are the main producers of mycotoxins deoxynivalenol, zearalenone and fumonisin B1, respectively. L. paracasie subsp. paracasie was found to be effective in reducing the amount of toxins produced, although fungal growth was not affected. The inhibition levels of Deoxynivalenol, Zearalenone and Fumonisin B1 production reached to 56.8, 73.0 and 76.5%, respectively. Meanwhile, L. rhamnosus showed the highest inhibitory activity against both fungal growth and mycotoxins production. It completely suppressed mycelium growth of all the studied Fusarium species and consequently, no toxin was produced in the presence of this bacterium. The obtained results confirm that, selected species of Lactic acid bacteria may be successfully used as a biological control agent of food contamination with molds and mycotoxins. This bio-preservation action has interesting technological possibilities for a variety of fermented food and dairy products.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords