alexa Intensity of Balance Task Intensity, as Measured by the Rate of Perceived Stability, is Independent of Physical Exertion as Measured by Heart Rate
ISSN: 2165-7025

Journal of Novel Physiotherapies
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Intensity of Balance Task Intensity, as Measured by the Rate of Perceived Stability, is Independent of Physical Exertion as Measured by Heart Rate

Debbie Espy1*, Ann Reinthal2 and Sarah Meisel3

1Physical Therapy Program, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA

2Physical Therapy Program, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA

3University Hospitals, UH Rehabilitation & Sports Medicine, Cleveland, Ohio, USA

*Corresponding Author:
Debbie Espy
Cleveland State University
School of Health Sciences, 2121 Euclid Avenue
HS 101, Cleveland, OH 44115
Tel: 216-687-3554
E-mail: [email protected]

Received date: March 28, 2017; Accepted date: May 03, 2017; Published date: May 10, 2017

Citation: Espy D, Reinthal A, Meisel S (2017) Intensity of Balance Task Intensity, as Measured by the Rate of Perceived Stability, is Independent of Physical Exertion as Measured by Heart Rate. J Nov Physiother 7:343. doi: 10.4172/2165-7025.1000343

Copyright: © 2017 Espy D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Objective: To be safe and effective, all therapeutic aspects of balance training must be set and monitored appropriately. There has been no means to assess the intensity component of balance training. The Rate of Perceived Stability (RPS) measures the level of challenge posed to an individual by a balance task. If using the RPS with balance tasks that also tax the cardio-pulmonary systems, such as video game based balance training, individuals may confuse the physical exertion with the balance challenge. The purpose of this study was to determine that the RPS measures the intensity of the balance exercises, independent of physical exertion as measured by heart rate (HR). Methods: Thirty adults, 19 to 43 years old, played four Wii games (boxing, dancing, tennis, and batting) on four surfaces (foam, wobble, bosu-up and down). HR and RPS were taken at 4 and 8 minutes of each. Statistics performed included: within subjects ANOVA; correlation and ANOVA for all RPS and HR; correlation for each subject, and for all subjects at each condition; regression for HR predicting RPS for each condition. Results: Repeated measures ANOVA for HR and RPS across conditions were both significant (p<0.001). No correlations between HR’s and RPS scores for all subjects, for each subject, or within any condition were significant (all >0.05). No regressions were significant (all >0.05). Conclusion: The self-ratings of stability using the RPS were independent by exertional effects as inferred through HR. The RPS can be used during video game based balance training to assess the intensity of the activity.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords