alexa Investigation of Drivers FOV and Related Ergonomics Usi

Journal of Ergonomics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Investigation of Drivers FOV and Related Ergonomics Using Laser Shadowgraphy from Automotive Interior

Wessam Hussein1*, Mohamed Nazeeh1 and Mahmoud MA Sayed2

1Military Technical College, KobryElkobbah, Cairo, Egypt

2Canadian International College, New Cairo, Cairo, Egypt

*Corresponding Author:
Wessam Hussein
Military Technical College, KobryElkobbah
11766, Cairo, Egypt
Tel: + 20222621908
E-mail: [email protected]

Received date: June 07, 2017; Accepted date: June 26, 2017; Published date: June 30, 2017

Citation: Hussein W, Nazeeh M, Sayed MMA (2017) Investigation of Driver’s FOV and Related Ergonomics Using Laser Shadowgraphy from Automotive Interior. J Ergonomics 7:207. doi: 10.4172/2165-7556.1000207

Copyright: © 2017 Hussein W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



A new application of laser shadowgraphy in automotive design and driver’s ergonomics investigation is described. The technique is based on generating a characterizing plot for the vehicle’s Field of View (FOV). This plot is obtained by projecting a high divergence laser beam from the driver’s eyes cyclopean point, on a cylindrical screen installed around the tested vehicle. The resultant shadow-gram is photographed on several shots by a narrow field camera to form a complete panoramic seen for the screen. The panorama is then printed as a plane sheet FOV plot. The obtained plot is used to measure and to analyse the areal visual field, the eye and nick movement ranges in correlation with FOV, the horizontal visual blind zones, the visual maximum vertical angle and other related ergonomic parameters. This work enable comparative FOV testing for many candidate cars to ease the evaluation of the automotive interior design from the ergonomics point of view, and helps car designers to enhance the preventive safety and ergonomics of their designs.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version