alexa In-vitro Mutagenesis Induction to Improve Abiotic Stres
ISSN: 2167-0412

Medicinal & Aromatic Plants
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

In-vitro Mutagenesis Induction to Improve Abiotic Stress in Tissue Cultured Plantlet of Picrohiza kurroa Royle ex. Benth: An Endangered Plant of Western Himalayas, India

Surjeet Singh Bisht, Anand Singh Bisht* and Rajendar Singh Chauhan

College of Horticulture, VCSG Uttarakhand University of Horticulture and Forestry, Bharsar, Pauri, Uttarakhand, India

 

 

 

*Corresponding Author:

 

Anand Sing Bisht
College of Horticulture
VCSG Uttarakhand University of Horticulture and Forestry
Bharsar, Pauri, Uttarakhand, India
Tel:91-1348-226070, 226059
E-mail: [email protected]

Received date: March 04, 2017; Accepted date: March 06, 2017; Published date: March 12, 2017

Citation: Bisht SS, Bisht AS, Chauhan RS (2017) In-vitro Mutagenesis Induction to Improve Abiotic Stress in Tissue Cultured Plantlet of Picrohiza kurroa Royle ex. Benth: An Endangered Plant of Western Himalayas, India. Med Aromat Plants (Los Angel) 6:287. doi:10.4172/2167-0412.1000287

Copyright: © 2017 Bisht SS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The study is focused to establish an improved salt and drought tolerant Picrohiza kurroa Royle ex Benth, an endangered medicinal plant of Western Himalayas through mutagenesis system in conjunction with in- vitro regeneration technique. Regeneration using leaf as explants from mature plant of characterized germplasm is beneficial because the source plant is not damaged. Efficient callus formation i.e., 85% was achieved in modified MS medium at 2,4-D at 3.5 mg L-1. Ethyl methane sulfonate (EMS) a chemical mutagen was used to induce mutation in the callus biomass under in-vitro condition. Relatively decreases in callus biomass were observed as the dose of mutagenic chemical increased from 0.0 to 0.8 mM. Selection of mutants callus lines were also investigated against salt (NaCl) and drought (mannitol) tolerance level by using its various concentrations i.e., 50 to 250 mM L-1. In mutagenized callus (MC) under both stress responses there was increase in callus biomass with the successive increase in concentration of NaCl and Mannitol till 100 mM L-1, after that it started decline. Stress tolerated mutant callus line were also characterized by the accumulation of proline and glycine betaine (GB) content. At 100 mM L-1 concentrations of NaCl and mannitol, higher proline and GB content were accumulated in the mutagenized callus i.e., 5.23 and 5.18 µmol g-1 FW and 11.23 and 11.98 µg g-1 FW respectively which is significantly higher in comparison to non-mutagenized callus (UM). For shoot proliferation in mutant callus line, various concentrations with combination of plant growth regulators (PGR’s) were used in treatments (T1, T2 and T3). Invariably, in treatment T3 the concentration of 1.0+0.5 mg L-1 resulted in highest shoot regeneration i.e., 85% while minimum 20% was obtained in T1 at concentration 0.5+0.1 mg L-1. NAA fortified MS medium was found superior to IAA and IBA with respect to the induction of roots. The mutant and stress selected grown through tissue engineering were evaluated for their ex situ agronomic performance in saline as well as drought condition for 30 days. Under both stress condition the mutant plant revealed a remarkable increase in all the parameters studied i.e., shoot and root length, fresh and dry root, shoot biomass and number of leaves with respect to normal plant (control).

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords